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Scalability of Wireless Communications

Conventional communications systems assume independent

and non-cooperative users.

= Peer-to-peer per node throughput
is Oy = O(\/Nllow). (N: # of users)
i.e. there exists a; and a» such that

aq a2

< Cy<
vVINIoOgN — N = vINlog N

[Gupta & Kumar 2000]

[Marco et al 2003]

= Many-to-one per node
throughput is Cy = O(+).
(data-gathering structure)




Data-Driven Communications

Sensor systems measure dependent data with cooperative users.

» Joint routing and compression. » Route selection for detection

[Scaglione & Servetto 2002] [Sung, Tong & Ephremides],
A — , Tracking [Zhao et al 2003]

! Sh+1
| Sensors' Zi?sorslzs“ sl/ O © 0 0 © 0 O 0O
' network
idata ? o o o
................ $h-15n
- . .—> o o o
iTradltlonaI approach 4 o o o
H Local G B B
; Combined sensor Sn
'representation of ~ data
| several sensors  © 0O .
| data Router Router
: Encode Encoder C o O O o©0
| Routing and Sourcecoding T | T N .

— Belongs to the class of “Data Aggregation’ Strategies

» Distributed Source Coding (compression without aggregation)
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Distributed Source Coding

Lossless Source Coding: Slepian-Wolf Theory [1973]
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» Lossy source coding (Wyner-Ziv Coding); Multiple Description Coding;

Successive Refinement Coding.
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A 2. The Slepian-Wolf rate region for twe sources.




Data Retrieval in Wireless Sensor Networks

Consider a network of sensors § = {sg,s1,---,Sy_1} and the
observations X = [X, X1, -, Xxy_1] made by the sensors.
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Data Retrieval in Wireless Sensor Networks

Consider a network of sensors § = {sg,s1,---,Sy_1} and the
observations X = [X, X1, -, Xxy_1] made by the sensors.
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GOAL.: Efficiently obtain a reconstruction of the observations
X with the minimum number of channel accesses.




Data Retrieval in Wireless Sensor Networks

Consider a network of sensors § = {sg,s1,---,Sy_1} and the
observations X = [X, X1, -, Xxy_1] made by the sensors.
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GOAL.: Efficiently obtain a reconstruction of the observations
X with the minimum number of channel accesses.

— Centralized query from a base-station;
— Multi-hop ad hoc network;
— Hierarchical sensor network.



State of the Art: Layered Solution

Distributed Source Coding 4+ Point-to-point transmissions
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X Encoding: requires long blocks of data at each encoder/sensor.
X Transmission: is point-to-point = wireless is broadcast!!
X Decoding: long latency due to joint decoding.



Key Intuition of Cooperative MAC

Key Intuition: Sensors with highly redundant data should coop-
erate to transmit through the same channel. [Hong, Scaglione 2004]
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Similar ideas: Type-Based Multiple Access for Detection and
Estimation problems [Mergen & Tong 2005], [Liu & Sayeed 2004]
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Binary Markov Source Model

Sensor network § = {sg,s1, " ,SN_1}-

Sensors’ observations X = [Xg, X1, -+, Xn_1].
= X, € {0,1} is the observation of s;.



Binary Markov Source Model

Sensor network § = {sg,s1, " ,SN_1}-

Sensors’ observations X = [Xg, X1, -+, Xn_1].
= X, € {0,1} is the observation of s;.

T wo-state Markov Model:

o Transition probabilities:
(G s« = P =1x=0)
B B = Pr{X;41=0|X;=1}
o) Cov(X;, X;
R
') 1+1



Binary Markov Source Model

Sensor network § = {sg,s1, " ,SN_1}-

Sensors’ observations X = [Xg, X1, -+, Xn_1].
= X, € {0,1} is the observation of s;.

T wo-state Markov Model:

o
1-o 6‘0 1-B 111111
p
e Cov(X;, X;41)
Sp=PriX;=1)= T p=—_ I =1 (a+5)
i X1
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Cooperative Data Gathering




Cooperative Data Gathering

U; = the I-th group queried.




Cooperative Data Gathering

., » Do you have 07 U; = the I-th group queried.
)p ©r Doyounhave1? Binary OR Channel:

ZUZ — v{iZSiGUl}{Xi # 1}
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Cooperative Data Gathering

. » Do you have 07 U; = the I-th group queried.
)p O Doyouhavei? Binary OR Channel:

Zu, = Viisev) fi(Xi)

f;() € {0,1} = boolean function
of X; at sensor s;.



Cooperative Data Gathering

_» Do you have 07 U, = the I-th group queried.
)p ©r Doyouhave 1? Binary OR Channel:

wl o -
2 . © 2y, = Vyis;eu Ji(Xi)

@ o N 2 .
° ° 5 @\0 f;(:) € {0,1} = boolean function
D D D D Ul

of X, at sensor s;.

The Physical Channel: r(t) =Y A;- fi(X;) - p(t — ;) + n(t)

» Noiseless Energy Detector: ||r(t)||?= > A f;(X;)p(t — 7;)]|2 >0

— Equivalent source coding problem (Z = [Zz(1) z(2)  7(L)]
represents X = [Xg, Xq,..., Xny_1] where E[L] < N).

H(X) S E[Lopt]
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Scalability of the Cooperative Scheme

Upper bound with suboptimal strategy,

H(X) < E[Lopt] < m[}n E[Lsub]

Theorem: Case I: for fixed (p,p) where (1 —p) <« 1,

E[Lopt] = O(N) = O(H (X)),
Case II: for fixed p and 1 — p = ¢/N for some ¢ > 0,

E[Lopt] = O(log(N)) = O(H(X)).




Suboptimal strategy with 0, 1, e

Sup-optimal Cooperative Transmission (0, 1, e):

E{2L}

<ZUZ7 ZUl) — (\/SiEUl{Xi # 0}7 \/SiEUl{Xi # 1}> .

FE[2L] vs Entropy Lower Bound

Number of nodes N = 64

(0): (Zy,, Zy,) = (0,1)
= all have bit O;

(1): (Zy,, Zy) = (1,0)
= all have bit 1;

(e): (Zy,2Zy) = (1,1)
= [Erasure.
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High or Low Density Sensor Networks

HDSN vs LDSN

= Example: reconstruction of bandlimited sensor fields.

Central Processor
Y A " N
//// )/ ‘l AN \\ N
A VA [ AN
I ' N
|

11



High or Low Density Sensor Networks

HDSN vs LDSN
= Example: reconstruction of bandlimited sensor fields.

» Reconstruction performance
LDSN: Nyquist Sampling
HDSN: Zero Crossing Position

Distortion:
D =0(g?) (LDSN);
D = 0(72) (HDSN)
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High or Low Density Sensor Networks

HDSN vs LDSN
= Example: reconstruction of bandlimited sensor fields.

» Reconstruction performance
LDSN: Nyquist Sampling
HDSN: Zero Crossing Position

Distortion:
D =0(g?) (LDSN);
D = 0(72) (HDSN)

» Communication cost
LDSN: Bits tx'ed k = O(log %)
HDSN: Using GTMA k = O(log )
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High or Low Density Sensor Networks

HDSN vs LDSN
= Example: reconstruction of bandlimited sensor fields.

» Reconstruction performance

LDSN: Nyquist Sampling
HDSN: Zero Crossing Position

Distortion:
D = O(¢?) (LDSN);
D = 0(72) (HDSN)

HDSN superior to LDSN
— Ener Efficienc
9y Y » Communication cost

— Hardware Cost )
LDSN: Bits tx'ed £ = O(log 6)

— System Versatility

[See Hong et al 2005 MILCOM]
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Data Gathering thru Sensor Queries

G Uy” Encoder
= U ) fz_(m) X x o1 L{Z-(m),
: A P(zlu) Z, ¢ Decoder
. glm) : zm _, HN L.
X )—> 7o U Feedback
T W s 2t
» Let X(m) = gm)(z(1) ... 7(m)) pe the estimate after m queries.

Let L be the number of queries used to acquire X.
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Data Gathering thru Sensor Queries

7 Uy” Encoder
0
fl — > Z(m)
: A P(zlu) |- =— ¢ Decoder
: | glm) : zm _, HN L.
’ ) (m)
(K —>o] Feedback
Q™ h"| | hgm) zmel Q,

» Let X(m) = g(m)(7(1) ... 7(m)) pe the estimate after m queries.
Let L be the number of queries used to acquire X.

Problem Description: Suppose ¢{"™) is fixed and Q") = z(m—1)
find {fz.(m)} that minimize E[L] subject to E[d(X,X(L))] < D (where
d(-,-): distortion function; D: distortion constraint).
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Improved Multiple Access Capacity

X In general, symbol-by-symbol encoding does NOT achieve
maximum coding efficiency.

» Cooperation over correlated sources increases the capacity
of the MAC channel.[Cover, El Gamal & Salehi 1980]

U _|Source Channel| X, | o U Joint Source and X | o
— - . » @ — ¢ » 0
Coding Coding Q_ Channel Coding ®
o2 vy 02| vy
o8 28
20 20
V  |Source Channel| X, | 5 \Y Joint Source and X, |5
Coding > Coding = Channel Coding =

» Feedback increases the MAC capacity.[Gaarder & Wolf 1975]
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Tree Representation

For |Z| finite = Sensor query is represented as a tree T.
» Let (2,8, P) be the probability space.

» Each node represents an
event, eg. tg = €2 and
t={w: ZW (W) =21, -, ZM (W) =2z,}

Estimate:
%, = gm)(z(1) ... (m))

Distortion: E[d(X, X¢)|¢]
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Tree Representation

For |Z| finite = Sensor query is represented as a tree T.
» Let (2,8, P) be the probability space.
» Each node represents an

event, eg. tg = €2 and
t={w: ZW (W) =21, -, ZM (W) =2z,}

Estimate:
%, = gm)(z(1) ... (m))

Distortion: E[d(X, X¢)|¢]

» Let l; be the depth of t and T be the leaf of tree T.

(1) Expected number of queries: E[L] =3, 71, - P(1)

(2) Average Distortion: E[d(X,X("))] =, _+E[d(X, %,)[t] - P(t)
14-a



Tree Construction

Special Case: Consider the trees T s.t. E[d(X,X¢)|t] < D' < D
for all t € T, where D is the distortion constraint.

Information- Theoretic Criterion: Given 2(0) ... (m=1) {ne
functions £(m) = {fz-(m), Vi}, is chosen such that

f(m) = arg nga§< 1(X; Z(m)|z(1:m—1) — Z(l:m—l))
£(m

The dependence is as follows:

Pr(zm|z(tm=1)y = N pr(zmf(m) (x))Pr(x|z{1m~ D).
XEH,L- X;
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Performance Bounds

Theorem 4 Let

a = sup {k >1:P (E[d(X,X|Z(1:k))|Z(1:k)] S D’) S O}.

For any tree T, E[L] can be bounded as
I(X, Z(1:Oé—|_1))/Gmax <E[L] < I(X; Z(1:04_|_1))/Gmin

where

I(X; Z(k+1)‘2(1:k¢))
Gmax = Sup S : )
0<k<a P (E[d(X X|Z(1:k))|Z(1'k)] > D/)

Gmin = _Inf 1k
0<k<a P (E[d(X X|z( o) |Z¢ )] > Dl)

and I(X; Z(W|ZA0h=1(X; Z(1)).
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Performance Bounds

E[L] < I(X; Z(1:()é_|_1))/G1min

G = inf I(X; Z+D|Z(R)
N o<k<ap (E[d(X,X\zu:mNZ(l:m] ” D/)
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Performance of the Design Criterion
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Blood Testing Example:

| {X;}:4 are i.i.d. Bernoulli with

J=0

| probability p = Pr{X,; = 1}.

| For the mt" query, select G,, and

fz'(m)(Xz') = liieg,, x;#1}

1 Response: (Binary OR Channel)

Zim = v{z’:siegm}{Xi 7= 1}.
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Performance of the Design Criterion
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Rate-Distortion Tradeoff

Construct a tree with
Design Criterion: I(X; Z(m)|Z(1m=1) = z(1:m—1))
Stopping Rule: L = inf {z  Eld(X, X))z ... zDO] < D’}.

— The achieved distortion is E[d(X,X1)] < D’.

Rate-distortion tradeoff = optimal pruning of the query tree.
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Rate-Distortion Tradeoff

Construct a tree with
Design Criterion: I(X; Z(m)|Z(1m=1) = z(1:m—1))
Stopping Rule: L = inf {l  Eld(X, X))z ... zDO] < D’}.

— The achieved distortion is E[d(X,X1)] < D’.

Rate-distortion tradeoff = optimal pruning of the query tree.
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Rate-Distortion Tradeoff

e Construct a tree with
Design Criterion: I(X; Z(m)|Z(1m=1) = z(1:m—1))
Stopping Rule: L = inf {l  Eld(X, X))z ... zDO] < D’}.

— The achieved distortion is E[d(X,X1)] < D’.

e Rate-distortion tradeoff = optimal pruning of the query tree.
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Rate-Distortion Tradeoff

e Construct a tree with
Design Criterion: I(X; Z(m)|Z(1m=1) = z(1:m—1))
Stopping Rule: L = inf {l  Eld(X, X))z ... zDO] < D’}.

— The achieved distortion is E[d(X,X1)] < D’.

e Rate-distortion tradeoff = optimal pruning of the query tree.
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Rate-Distortion Tradeoff

e Construct a tree with
Design Criterion: I(X; Z(m)|Z(1m=1) = z(1:m—1))
Stopping Rule: L = inf {z  Eld(X, X))z ... zDO] < D’}.

— The achieved distortion is E[d(X,X1)] < D’.

e Rate-distortion tradeoff = optimal pruning of the query tree.
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Consensus in Decentralized Decisions

( Phenomenon He or H ) Local Binary Hypothesis Testing:

lXo lX1 ...... lXN_1 Ho @ X; ~ fO,i
Sensor 0 Sensorr1 ------ SensorrN-1 Hli Xi ~ f]_,i
Uom T luLm ______ uvim Where fo;, f1,; are the density
U functions of X, conditioned on
Broadcast :
Medium Ho,H1, respectively.
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Consensus in Decentralized Decisions

Local Binary Hypothesis Testing:
( Phenomenon Ho or Hs )
lXo lX1 ...... [ Ho: X5~ foyu
Hi o X~ f14
Sensor 0 Sensori1| ------ Sensor N-1 )
Uorm T luw U fvi- the density function of X;|Hy,.
Unm-1

Broadcast
Medium

» Let u;,, be the local decision at s; after m — 1 iterations:
u; m = D;i(X;,ug,ug, -+, Wpy—1)

where uy, = [uo,ma Ul ms """ ,’U,N_]_’m].

19-a



Consensus in Decentralized Decisions

Local Binary Hypothesis Testing:
( Phenomenon Ho or Hs )

lXo lX1 ...... [ Ho: X5~ foyu
Sensor0 || Sensor1| ------ Sensor N-1 Hl | Xi ~ fl,i

Uom T lum s Joat the density function of X;|H,,.

U1 Goal: Eventually have all the sen-

Broadcast .
Medium SOrs agree on a common decision.

» Let u;,, be the local decision at s; after m — 1 iterations:
u; m = D;i(X;,ug,ug, -+, Wpy—1)

where uy, = [uo,ma Ul ms """ ,’U,N_]_’m].
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Consensus in Decentralized Decisions

Local Binary Hypothesis Testing:
( Phenomenon Ho or Hs )
lxo lX1 ...... [ Ho Xi~ fo,
Sensor0 || Sensor1| ------ Sensor N-1 Hl | Xi ~ fl,i
Uon T lum ...... e Jbit the density function of X;[H,,.
U Goal: Eventually have all the sen-

Broadcast

Medium SOrs agree on a common decision.

» Let u;,, be the local decision at s; after m — 1 iterations:
u; m = D;i(X;,ug,ug, -+, Wpy—1)

where uy, = [uo,ma Ul ms """ ,’U,N_]_’m].

Without Cooperation: E[L(™)]=N;
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Consensus in Decentralized Decisions

Local Binary Hypothesis Testing:
( Phenomenon Ho or Hs )
lxo lX1 ...... [ Ho Xi~ fo,
Sensor0 || Sensor1| ------ Sensor N-1 Hl | Xi ~ fl,i
Uon T lum ...... e Jbit the density function of X;[H,,.
U Goal: Eventually have all the sen-

Broadcast

Medium SOrs agree on a common decision.

» Let u;,, be the local decision at s; after m — 1 iterations:
u; m = D;i(X;,ug,ug, -+, Wpy—1)

where uy, = [uo,ma Ul ms """ ,’U,N_]_’m].

Without Cooperation: E[L(™)]=N;
With Cooperation: E[L("™)] ~ O(H (um|uf™ ). |10.4




Simulation: Gaussian Shift-in-mean
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Gaussian Shift-in-Mean:

Ho : X; ~ N (pg,0°)

Hi: X ~N(p1,0°)
where ug = —1, pu;7 = 1 and
o= 2.

Simulation Parameters:

— the number of nodes N = 20
— averaged over 1000 trials

— Pr(Hg) = Pr(H,1) = 0.5
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Conclusions and Future Directions

Importance of Data-Driven Communications: (1) Energy effi-
ciency; (2) Bandwidth efficiency.

We proposed Cooperative Transmissions through Group Queries
as a method to achieve Data-Driven Communications.

Evolution of Sensor Network Communications:

Individual Query = Group Query;
Node Centric = Data Centric or Application Centric;
Point-to-point = Connectionless Transmissions.

Future Directions
— Derive the fundamental limits of this strategy;
— Combine computation with communications.
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