Data-Driven Communications for Large Scale Sensor Networks

Presented by Yao-Win Hong

January 9, 2006

Joint work with Anna Scaglione and Pramod K. Varshney

Scalability of Wireless Communications

Conventional communications systems assume independent

and non-cooperative users.

 \Rightarrow Peer-to-peer per node throughput is $C_N = O(\frac{1}{\sqrt{N \log N}})$. (N: # of users) *i.e.* there exists a_1 and a_2 such that

$$\frac{a_1}{\sqrt{N\log N}} \le C_N \le \frac{a_2}{\sqrt{N\log N}}$$

 \Rightarrow Many-to-one per node throughput is $C_N = O(\frac{1}{N})$. (data-gathering structure)

Data-Driven Communications

- Sensor systems measure dependent data with cooperative users.
- ➤ Joint routing and compression. [Scaglione & Servetto 2002]

Route selection for detection [Sung, Tong & Ephremides],

Tracking [Zhao et al 2003]

- ⇒ Belongs to the class of "Data Aggregation" Strategies
- Distributed Source Coding (compression without aggregation)

Distributed Source Coding

Lossless Source Coding: Slepian-Wolf Theory [1973]

2. The Slepian-Wolf rate region for two sources.

Lossy source coding (Wyner-Ziv Coding); Multiple Description Coding; Successive Refinement Coding.

Data Retrieval in Wireless Sensor Networks

• Consider a network of sensors $\mathcal{S}=\{s_0,s_1,\cdots,s_{N-1}\}$ and the observations $\mathbf{X}=[X_0,X_1,\cdots,X_{N-1}]$ made by the sensors.

Data Retrieval in Wireless Sensor Networks

• Consider a network of sensors $S = \{s_0, s_1, \cdots, s_{N-1}\}$ and the observations $\mathbf{X} = [X_0, X_1, \cdots, X_{N-1}]$ made by the sensors.

 \underline{GOAL} : Efficiently obtain a reconstruction of the observations X with the $\underline{minimum\ number\ of\ channel\ accesses}$.

Data Retrieval in Wireless Sensor Networks

• Consider a network of sensors $S=\{s_0,s_1,\cdots,s_{N-1}\}$ and the observations $\mathbf{X}=[X_0,X_1,\cdots,X_{N-1}]$ made by the sensors.

 $\underline{\text{GOAL:}}$ Efficiently obtain a reconstruction of the observations X with the $\underline{\text{minimum number of channel accesses}}$.

- Centralized query from a base-station;
- Multi-hop ad hoc network;
- Hierarchical sensor network.

State of the Art: Layered Solution

Distributed Source Coding + Point-to-point transmissions

- × Encoding: requires long blocks of data at each encoder/sensor.
- \times **Transmission:** is point-to-point \Rightarrow wireless is broadcast!!
- × Decoding: long latency due to joint decoding.

Key Intuition of Cooperative MAC

Key Intuition: Sensors with highly redundant data should cooperate to transmit through the same channel. [Hong, Scaglione 2004]

Similar ideas: Type-Based Multiple Access for Detection and Estimation problems [Mergen & Tong 2005], [Liu & Sayeed 2004]

Binary Markov Source Model

- Sensor network $S = \{s_0, s_1, \cdots, s_{N-1}\}.$
- Sensors' observations $\mathbf{X} = [X_0, X_1, \cdots, X_{N-1}].$
 - $\Rightarrow X_i \in \{0,1\}$ is the observation of s_i .

Binary Markov Source Model

- Sensor network $S = \{s_0, s_1, \cdots, s_{N-1}\}.$
- Sensors' observations $\mathbf{X} = [X_0, X_1, \cdots, X_{N-1}].$
 - $\Rightarrow X_i \in \{0,1\}$ is the observation of s_i .

Two-state Markov Model:

Transition probabilities:

$$\alpha = \Pr\{X_{i+1} = 1 | X_i = 0\};$$

 $\beta = \Pr\{X_{i+1} = 0 | X_i = 1\}$

$$\Rightarrow p = \Pr\{X_i = 1\} = \frac{\alpha}{\alpha + \beta}; \quad \rho = \frac{\operatorname{Cov}(X_i, X_{i+1})}{\sigma_{X_i} \sigma_{X_{i+1}}} = 1 - (\alpha + \beta)$$

Binary Markov Source Model

- Sensor network $S = \{s_0, s_1, \cdots, s_{N-1}\}.$
- Sensors' observations $\mathbf{X} = [X_0, X_1, \cdots, X_{N-1}].$
 - $\Rightarrow X_i \in \{0,1\}$ is the observation of s_i .

Two-state Markov Model:

$$\Rightarrow p = \Pr\{X_i = 1\} = \frac{\alpha}{\alpha + \beta}; \quad \rho = \frac{\operatorname{Cov}(X_i, X_{i+1})}{\sigma_{X_i} \sigma_{X_{i+1}}} = 1 - (\alpha + \beta)$$

• $U_l \triangleq$ the l-th group queried.

- $U_l \triangleq$ the *l*-th group queried.
- Binary OR Channel:

$$Z_{U_l} = \vee_{\{i: s_i \in U_l\}} \{X_i \neq 1\}$$

- $U_l \triangleq$ the *l*-th group queried.
- Binary OR Channel:

$$Z_{U_l} = \vee_{\{i: s_i \in U_l\}} f_i(X_i)$$

 $f_i(\cdot) \in \{0,1\} \triangleq \text{boolean function}$ of X_i at sensor s_i .

- $U_l \triangleq$ the l-th group queried.
- Binary OR Channel:

$$Z_{U_l} = \vee_{\{i: s_i \in U_l\}} f_i(X_i)$$

 $f_i(\cdot) \in \{0,1\} \triangleq ext{boolean function}$ of X_i at sensor s_i .

The Physical Channel:

$$r(t) = \sum_{i} A_i \cdot f_i(X_i) \cdot p(t - \tau_i) + n(t)$$

- Noiseless Energy Detector: $||r(t)||^2 = ||\sum_i A_i f_i(X_i) p(t-\tau_i)||^2 > 0$
- \Rightarrow Equivalent source coding problem ($\mathbf{Z} = [Z^{(1)}, Z^{(2)}, ..., Z^{(L)}]$ represents $\mathbf{X} = [X_0, X_1, ..., X_{N-1}]$ where $\mathbf{E}[L] \leq N$).

$$H(\mathbf{X}) \leq \mathbf{E}[L_{opt}]$$

Scalability of the Cooperative Scheme

Upper bound with suboptimal strategy,

$$H(\mathbf{X}) \leq \mathbf{E}[L_{opt}] \leq \min_{K} \mathbf{E}[L_{sub}]$$

Theorem: Case I: for fixed (p, ρ) where $(1 - \rho) \ll 1$,

$$E[L_{opt}] = O(N) = O(H(X));$$

Case II: for fixed p and $1 - \rho = c'/N$ for some c' > 0,

$$E[L_{opt}] = O(\log(N)) = O(H(X)).$$

Suboptimal strategy with 0, 1, e

Sup-optimal Cooperative Transmission (0, 1, e):

$$(Z_{U_l}, \bar{Z}_{U_l}) = (\vee_{s_i \in U_l} \{X_i \neq 0\}, \vee_{s_i \in U_l} \{X_i \neq 1\}).$$

E[2L] vs Entropy Lower Bound

• Number of nodes N = 64

(0): $(Z_{U_l}, \bar{Z}_{U_l}) = (0, 1)$ \Rightarrow all have bit 0;

(1): $(Z_{U_l}, \bar{Z}_{U_l}) = (1, 0)$ \Rightarrow all have bit 1;

(e): $(Z_{U_l}, \bar{Z}_{U_l}) = (1, 1)$ \Rightarrow Erasure.

HDSN vs LDSN

⇒ Example: reconstruction of bandlimited sensor fields.

HDSN vs LDSN

⇒ Example: reconstruction of bandlimited sensor fields.

Reconstruction performance

LDSN: Nyquist Sampling

HDSN: Zero Crossing Position

HDSN vs LDSN

⇒ Example: reconstruction of bandlimited sensor fields.

Reconstruction performance

LDSN: Nyquist Sampling

HDSN: Zero Crossing Position

Communication cost

LDSN: Bits tx'ed $k = O(\log \frac{1}{q})$

HDSN: Using GTMA $k = O(\log \frac{1}{\tau})$

HDSN vs LDSN

⇒ Example: reconstruction of bandlimited sensor fields.

HDSN superior to LDSN

- Energy Efficiency
- Hardware Cost
- System Versatility
- Robustness

[See Hong et al 2005 MILCOM]

Reconstruction performance

LDSN: Nyquist Sampling

HDSN: Zero Crossing Position

Communication cost

LDSN: Bits tx'ed $k = O(\log \frac{1}{q})$

HDSN: Using GTMA $k = O(\log \frac{1}{\tau})$

Data Gathering thru Sensor Queries

Let $\hat{\mathbf{X}}^{(m)} = g^{(m)}(Z^{(1)}, \dots, Z^{(m)})$ be the estimate after m queries. Let L be the number of queries used to acquire X.

Data Gathering thru Sensor Queries

Let $\hat{\mathbf{X}}^{(m)} = g^{(m)}(Z^{(1)}, \dots, Z^{(m)})$ be the estimate after m queries. Let L be the number of queries used to acquire X.

Problem Description: Suppose $g^{(m)}$ is fixed and $Q^{(m)} = Z^{(m-1)}$, find $\{f_i^{(m)}\}$ that minimize $\mathbf{E}[L]$ subject to $\mathbf{E}[d(\mathbf{X}, \widehat{\mathbf{X}}^{(L)})] \leq D$ (where $d(\cdot, \cdot)$: distortion function; D: distortion constraint).

Improved Multiple Access Capacity

- X In general, symbol-by-symbol encoding does NOT achieve maximum coding efficiency.
- ► Cooperation over correlated sources increases the capacity of the MAC channel.[Cover, El Gamal & Salehi 1980]

► Feedback increases the MAC capacity.[Gaarder & Wolf 1975]

Tree Representation

- For $|\mathcal{Z}|$ finite \Rightarrow Sensor query is represented as a tree T.
- \blacktriangleright Let (Ω, \mathcal{B}, P) be the probability space.

Each node represents an event, eg. $t_0 = Ω$ and

$$t = \{\omega : Z^{(1)}(\omega) = z_1, \dots, Z^{(m)}(\omega) = z_m\}$$

Estimate:

$$\hat{\mathbf{x}}_t = g^{(m)}(z^{(1)}, \cdots, z^{(m)})$$

Distortion: $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{x}}_t)|t]$

Tree Representation

- For $|\mathcal{Z}|$ finite \Rightarrow Sensor query is represented as a tree T.
- \blacktriangleright Let (Ω, \mathcal{B}, P) be the probability space.

Each node represents an event, eg. $t_0 = Ω$ and

$$t = \{\omega : Z^{(1)}(\omega) = z_1, \dots, Z^{(m)}(\omega) = z_m\}$$

Estimate:

$$\hat{\mathbf{x}}_t = g^{(m)}(z^{(1)}, \cdots, z^{(m)})$$

Distortion: $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{x}}_t)|t]$

- ▶ Let l_t be the depth of t and \tilde{T} be the leaf of tree T.
- (1) Expected number of queries: $\mathbf{E}[L] = \sum_{t \in \tilde{T}} l_t \cdot P(t)$
- (2) Average Distortion: $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(L)})] = \sum_{t \in \tilde{T}} \mathbf{E}[d(\mathbf{X}, \hat{\mathbf{x}}_t)|t] \cdot P(t)$

Tree Construction

Special Case: Consider the trees T s.t. $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{x}}_t)|t] \leq D' < D$ for all $t \in \tilde{T}$, where D is the distortion constraint.

Information-Theoretic Criterion: Given $z^{(0)}, \dots, z^{(m-1)}$, the functions $\mathbf{f}^{(m)} = \{f_i^{(m)}, \forall i\}$, is chosen such that

$$\mathbf{f}^{(m)} = \arg \max_{\mathbf{f}^{(m)}} I(\mathbf{X}; \bar{Z}^{(m)} | \bar{\mathbf{Z}}^{(1:m-1)} = \mathbf{z}^{(1:m-1)})$$

The dependence is as follows:

$$\Pr(Z^{(m)}|\mathbf{z}^{(1:m-1)}) = \sum_{\mathbf{x} \in \prod_i \mathcal{X}_i} \Pr(Z^{(m)}|\mathbf{f}^{(m)}(\mathbf{x})) \Pr(\mathbf{x}|\mathbf{z}^{(1:m-1)}).$$

Performance Bounds

Theorem 4 Let

$$\alpha = \sup \left\{ k \ge 1 : P\left(\mathbf{E}[d(\mathbf{X}, \widehat{\mathbf{X}}_{|\mathbf{Z}^{(1:k)}}) | \mathbf{Z}^{(1:k)}] > D'\right) > 0 \right\}.$$

For any tree T, $\mathbf{E}[L]$ can be bounded as

$$I(\mathbf{X}; \mathbf{\bar{Z}^{(1:\alpha+1)}})/G_{\mathsf{max}} \leq \mathbf{E}[L] \leq I(\mathbf{X}; \mathbf{\bar{Z}^{(1:\alpha+1)}})/G_{\mathsf{min}}$$

where

$$G_{\max} = \sup_{0 \le k \le \alpha} \frac{I(\mathbf{X}; \bar{Z}^{(k+1)} | \bar{\mathbf{Z}}^{(1:k)})}{P\left(\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}_{|\mathbf{Z}^{(1:k)}}) | \mathbf{Z}^{(1:k)}] > D'\right)},$$

$$G_{\min} = \inf_{0 \le k \le \alpha} \frac{I(\mathbf{X}; \bar{Z}^{(k+1)} | \bar{\mathbf{Z}}^{(1:k)})}{P\left(\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}_{|\mathbf{Z}^{(1:k)}}) | \mathbf{Z}^{(1:k)}] > D'\right)}$$

and
$$I(X; \bar{Z}^{(1)}|\bar{Z}^{(1:0)})=I(X; \bar{Z}^{(1)}).$$

Performance Bounds

Theorem 4 Let

$$\alpha = \sup \left\{ k \ge 1 : P\left(\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}_{|\mathbf{Z}^{(1:k)}}) | \mathbf{Z}^{(1:k)}] > D'\right) > 0 \right\}.$$

For any tree T, $\mathbf{E}[L]$ can be bounded as

$$I(\mathbf{X}; \mathbf{\bar{Z}}^{(1:\alpha+1)})/G_{\mathsf{max}} \leq \mathbf{E}[L] \leq I(\mathbf{X}; \mathbf{\bar{Z}}^{(1:\alpha+1)})/G_{\mathsf{min}}$$

where

$$G_{\max} = \sup_{0 \le k \le \alpha} \frac{I(\mathbf{X}; \bar{\mathbf{Z}}^{(k+1)} | \bar{\mathbf{Z}}^{(1:k)})}{P\left(\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}_{|\mathbf{Z}^{(1:k)}}) | \mathbf{Z}^{(1:k)}] > D'\right)},$$

$$G_{\min} = \inf_{0 \le k \le \alpha} \frac{I(\mathbf{X}; \bar{Z}^{(k+1)} | \bar{\mathbf{Z}}^{(1:k)})}{P\left(\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}_{|\mathbf{Z}^{(1:k)}}) | \mathbf{Z}^{(1:k)}] > D'\right)}$$

Performance of the Design Criterion

Blood Testing Example:

 $\{X_j\}_{j=0}^{N-1}$ are *i.i.d.* Bernoulli with probability $p = Pr\{X_j = 1\}$.

For the m^{th} query, select \mathcal{G}_m and $f_i^{(m)}(X_i) = \mathbf{1}_{\{i \in \mathcal{G}_m, X_i \neq 1\}}.$

Response: (Binary OR Channel)

$$Z_m = \vee_{\{i: s_i \in \mathcal{G}_m\}} \{X_i \neq 1\}.$$

Performance of the Design Criterion

Blood Testing Example:

 $\{X_j\}_{j=0}^{N-1}$ are *i.i.d.* Bernoulli with probability $p = Pr\{X_j = 1\}$.

For the m^{th} query, select \mathcal{G}_m and $f_i^{(m)}(X_i) = \mathbf{1}_{\{i \in \mathcal{G}_m, X_i \neq 1\}}.$

Response: (Binary OR Channel)

$$Z_m = \vee_{\{i: s_i \in \mathcal{G}_m\}} \{X_i \neq 1\}.$$

Cutoff Probability: The value of p below which TDMA is optimal.

```
Design Criterion: I(\mathbf{X}; \bar{Z}^{(m)}|\bar{\mathbf{Z}}^{(1:m-1)} = \mathbf{z}^{(1:m-1)})
Stopping Rule: L = \inf\left\{l: \mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})|Z^{(1)}, \cdots, Z^{(l)}] \leq D'\right\}.
```

- \Rightarrow The achieved distortion is $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})] \leq D'$.
- Rate-distortion tradeoff \Rightarrow optimal pruning of the query tree.

Design Criterion:
$$I(\mathbf{X}; \bar{Z}^{(m)}|\bar{\mathbf{Z}}^{(1:m-1)} = \mathbf{z}^{(1:m-1)})$$

Stopping Rule: $L = \inf\left\{l: \mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})|Z^{(1)}, \cdots, Z^{(l)}] \leq D'\right\}.$

- \Rightarrow The achieved distortion is $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})] \leq D'$.
- Rate-distortion tradeoff \Rightarrow optimal pruning of the query tree.

Design Criterion:
$$I(\mathbf{X}; \bar{Z}^{(m)}|\bar{\mathbf{Z}}^{(1:m-1)} = \mathbf{z}^{(1:m-1)})$$

Stopping Rule: $L = \inf\left\{l: \mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})|Z^{(1)}, \cdots, Z^{(l)}] \leq D'\right\}.$

- \Rightarrow The achieved distortion is $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})] \leq D'$.
- Rate-distortion tradeoff \Rightarrow optimal pruning of the query tree.

Design Criterion:
$$I(\mathbf{X}; \bar{Z}^{(m)}|\bar{\mathbf{Z}}^{(1:m-1)} = \mathbf{z}^{(1:m-1)})$$

Stopping Rule: $L = \inf\left\{l: \mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})|Z^{(1)}, \cdots, Z^{(l)}] \leq D'\right\}.$

- \Rightarrow The achieved distortion is $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})] \leq D'$.
- Rate-distortion tradeoff \Rightarrow optimal pruning of the query tree.

Design Criterion:
$$I(\mathbf{X}; \bar{Z}^{(m)}|\bar{\mathbf{Z}}^{(1:m-1)} = \mathbf{z}^{(1:m-1)})$$

Stopping Rule: $L = \inf\left\{l: \mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})|Z^{(1)}, \cdots, Z^{(l)}] \leq D'\right\}.$

- \Rightarrow The achieved distortion is $\mathbf{E}[d(\mathbf{X}, \hat{\mathbf{X}}^{(l)})] \leq D'$.
- Rate-distortion tradeoff \Rightarrow optimal pruning of the query tree.

Local Binary Hypothesis Testing:

 $\mathcal{H}_0: X_i \sim f_{0,i}$ $\mathcal{H}_1: X_i \sim f_{1,i}$

u_{N-1,m} where $f_{0,i}$, $f_{1,i}$ are the density functions of X_i conditioned on $\mathcal{H}_0,\mathcal{H}_1$, respectively.

Local Binary Hypothesis Testing:

 $\mathcal{H}_0: X_i \sim f_{0,i}$ $\mathcal{H}_1: X_i \sim f_{1,i}$

 $\int_{\mathsf{U}_{\mathsf{N}\text{-1,m}}} f_{b,i}$: the density function of $X_i | \mathcal{H}_b$.

▶ Let $u_{i,m}$ be the local decision at s_i after m-1 iterations:

$$u_{i,m} = \mathcal{D}_i(X_i, \mathbf{u}_0, \mathbf{u}_1, \cdots, \mathbf{u}_{m-1})$$

where $\mathbf{u}_m = [u_{0,m}, u_{1,m}, \cdots, u_{N-1,m}].$

Local Binary Hypothesis Testing:

 $\mathcal{H}_0: X_i \sim f_{0,i}$ $\mathcal{H}_1: X_i \sim f_{1,i}$

 $\overline{\bigcup_{\mathsf{U}_{\mathsf{N-1},\mathsf{m}}}} f_{b,i}$: the density function of $X_i|\mathcal{H}_b$.

Goal: Eventually have all the sensors agree on a common decision.

▶ Let $u_{i,m}$ be the local decision at s_i after m-1 iterations:

$$u_{i,m} = \mathcal{D}_i(X_i, \mathbf{u}_0, \mathbf{u}_1, \cdots, \mathbf{u}_{m-1})$$

where $\mathbf{u}_m = [u_{0,m}, u_{1,m}, \cdots, u_{N-1,m}].$

Local Binary Hypothesis Testing:

 $\mathcal{H}_0: X_i \sim f_{0,i}$ $\mathcal{H}_1: X_i \sim f_{1,i}$

 $\int_{\mathsf{U}_{\mathsf{N}\text{-}\mathsf{1},\mathsf{m}}} f_{b,i}$: the density function of $X_i|\mathcal{H}_b$.

Goal: Eventually have all the sensors agree on a common decision.

▶ Let $u_{i,m}$ be the local decision at s_i after m-1 iterations:

$$u_{i,m} = \mathcal{D}_i(X_i, \mathbf{u}_0, \mathbf{u}_1, \cdots, \mathbf{u}_{m-1})$$

where $\mathbf{u}_m = [u_{0,m}, u_{1,m}, \cdots, u_{N-1,m}].$

Without Cooperation: $E[L^{(m)}] = N$;

Local Binary Hypothesis Testing:

 $\mathcal{H}_0: X_i \sim f_{0,i}$ $\mathcal{H}_1: X_i \sim f_{1,i}$

 $\int_{\mathsf{U}_{\mathsf{N-1},\mathsf{m}}} f_{b,i}$: the density function of $X_i | \mathcal{H}_b$.

Goal: Eventually have all the sensors agree on a common decision.

▶ Let $u_{i,m}$ be the local decision at s_i after m-1 iterations:

$$u_{i,m} = \mathcal{D}_i(X_i, \mathbf{u}_0, \mathbf{u}_1, \cdots, \mathbf{u}_{m-1})$$

where $\mathbf{u}_m = [u_{0,m}, u_{1,m}, \cdots, u_{N-1,m}].$

Without Cooperation: $E[L^{(m)}] = N;$

With Cooperation: $\mathbf{E}[L^{(m)}] \approx O(H(\mathbf{u}_m | \mathbf{u}_0^{m-1}))$. $|_{19-d}$

Simulation: Gaussian Shift-in-mean

Gaussian Shift-in-Mean:

 $\mathcal{H}_0: X_i \sim \mathcal{N}(\mu_0, \sigma^2)$

 $\mathcal{H}_1: X_i \sim \mathcal{N}(\mu_1, \sigma^2)$

where $\mu_0=-1$, $\mu_1=1$ and $\sigma=2$.

Simulation Parameters:

- the number of nodes N = 20
- averaged over 1000 trials
- $\Pr(\mathcal{H}_0) = \Pr(\mathcal{H}_1) = 0.5$

Conclusions and Future Directions

- Importance of Data-Driven Communications: (1) Energy efficiency; (2) Bandwidth efficiency.
- We proposed <u>Cooperative Transmissions through Group Queries</u> as a method to achieve <u>Data-Driven Communications</u>.

Evolution of Sensor Network Communications:

Individual Query \Rightarrow Group Query;

Node Centric ⇒ Data Centric or Application Centric;

Point-to-point \Rightarrow Connectionless Transmissions.

Future Directions

- Derive the fundamental limits of this strategy;
- Combine computation with communications.