後卓越計畫進度報告

Broadband Systems Laboratory

Advisor : Prof. Chin-Liang Wang Presented by Yih-Shyh Chiou November 13, 2006

R

Why Tracking and Prediction Are Needed in an Indoor Location Estimation (1/2)

- Representation of Dynamic Systems
 - ✓ State equation: $\mathbf{x}_k = f_x(\mathbf{x}_{k-1}, \mathbf{u}_k)$
 - \mathbf{x}_k state vector at time instant k
 - f_x state transition function
 - \mathbf{u}_k process noise with known distribution
 - ✓ Observation equation: $\mathbf{z}_k = f_z(\mathbf{x}_k, \mathbf{v}_k)$
 - \mathbf{z}_k observations at time instant k
 - f_z observation function
 - \mathbf{v}_k observation noise with known distribution
- > Assume that on the first sample at time $t=t_1$, two people are detected at ranges R_1 and R_2 ; assume that on the next sample at time $t=t_1+T$, again two people are detected
 - The question arises as to whether these two people detected on the second sample are the same two people or two new people

(()

R₁

Kalman Filter (KF) Model

Target motion	$\begin{bmatrix} x_1(t+T) \\ x_2(t+T) \\ \dot{x}_1(t+T) \\ \dot{x}_2(t+T) \end{bmatrix} = \begin{bmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} + \begin{bmatrix} w_1(t) \\ w_2(t) \\ \dot{w}_1(t) \\ \dot{w}_2(t) \end{bmatrix}$
Position measurement	$\begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} + \begin{bmatrix} v_{1}(t) \\ v_{2}(t) \end{bmatrix}$
State equation Observation equation	$\mathbf{x}(t+T) = \mathbf{\Phi}(T)\mathbf{x}(t) + \mathbf{w}(t) , \mathbf{Q}(t) = E\left[\mathbf{w}(t)\mathbf{w}(t)^{T}\right]$ $\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{v}(T) , \qquad \mathbf{R}(t) = E\left[\mathbf{v}(t)\mathbf{v}(t)^{T}\right]$
State and measurement equations	$\mathbf{z}_k = \mathbf{y}_k - \mathbf{H}_k \tilde{\mathbf{x}}_k$ innovation = measurement - prediciton $\hat{\mathbf{x}}_k = \tilde{\mathbf{x}}_k + \mathbf{K}_k \mathbf{z}_k$ State estimate $\tilde{\mathbf{x}}_{k+1} = \mathbf{\Phi}_k \hat{\mathbf{x}}_k + \mathbf{f}_k$ State prediction
Kalman gain and error covariance equations	$\begin{split} \mathbf{K}_{k} &= \tilde{\mathbf{P}}_{k} \mathbf{H}_{k}^{T} \left[\mathbf{H}_{k} \tilde{\mathbf{P}}_{k} \mathbf{H}_{k}^{T} + \mathbf{R}_{k} \right]^{-1} & \text{Kalman gain} \\ \hat{\mathbf{P}}_{k} &= \left[1 - \mathbf{K}_{k} \mathbf{H}_{k} \right] \tilde{\mathbf{P}}_{k} & \text{Estimate covariance} \\ \tilde{\mathbf{P}}_{k+1} &= \mathbf{\Phi}_{k} \hat{\mathbf{P}}_{k} \mathbf{\Phi}_{k}^{T} + \mathbf{Q}_{k} & \text{Prediction covariance} \end{split}$

α - β Filter Model

 $\tilde{\mathbf{x}}, \tilde{\mathbf{v}} = \tilde{\dot{\mathbf{x}}}$ predicted position, velocity $\hat{\mathbf{x}}, \hat{\mathbf{v}} = \hat{\dot{\mathbf{x}}}$ updated position, velocity \mathbf{y}_k measured position

Updating step $\hat{\mathbf{x}} = \tilde{\mathbf{x}}_k + \alpha (\mathbf{y}_k - \tilde{\mathbf{x}}_k)$ $\hat{\mathbf{v}}_k = \hat{\mathbf{v}}_{k-1} + \beta \frac{(\mathbf{y}_k - \tilde{\mathbf{x}}_k)}{T}$ α and β are tuning constants between 0 and 1

 $\alpha = \beta = 0$: Measurement has no effect $\alpha = \beta = 1$: History has no effect

0

α

 $\mathbf{0}$

 β/T

Properties

- > Properties of the α β tracker :
 - The α β tracker is a low-pass filter used to smooth out the effects of measurement noise
 - If the α β tracker is based on the steady state of the KF algorithm, it does not require a priori knowledge of the state and measurement noise covariances
 - The performance of the α β filter may not be as good as that of the KF
 - The equations of the α β filter are simpler to implement than that of the KF
- The degenerate form of the KF is taken as follows:

Measurement matrix Coefficient (gain) matrix

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} \alpha \\ 0 \\ \beta/T \\ 0 \end{bmatrix}$$