
Design and Implementation of WIRE1x

Yu-Ping Wang2, Jyh-Cheng Chen1,2, and Yi-Wen Liu1

1Department of Computer Science
2Institute of Communications Engineering

National Tsing Hua University
Hsinchu, Taiwan

Email: {ypwang,jcchen,ywliu}@wire.cs.nthu.edu.tw

November 11, 2004

Abstract

This paper presents the design and implementation of WIRE1x. The WIRE1x is an open-source im-
plementation of IEEE 802.1x client (supplicant) developed by the Wireless Internet Research & Engi-
neering (WIRE) Laboratory. The IEEE 802.1x standard defines a port-based network access control to
authenticate and authorize devices interconnected by various IEEE 802 LANs. The IEEE 802.11i also
incorporates 802.1x as its authentication solution for IEEE 802.11 wireless LANs. The motivation for
the development of WIRE1x is to help the deployment of IEEE 802.1x to secure wireless WLANs. It
would also achieve seamless roaming among different wireless LANs if the new IEEE standards are
widely-deployed. The WIRE1x has been practically used on the wireless LANs deployed at the National
Tsing Hua University and many other places. This paper illustrates the software architecture and design
principles of WIRE1x so people could comprehend the source code of WIRE1x easily.

Keywords: Authentication, Extensible Authentication Protocol (EAP), IEEE 802.1x, IEEE 802.11i, Wire-
less LANs, Security



1 Introduction

Wireless local area network (WLAN) is more and more prevailing in these years. It, however, has been
widely reported that security has been a weakness of the current IEEE 802.11 standards. The Task Group I
of IEEE P802.11 Working Group is defining 802.11i [1, 2] to enhance security in current 802.11 standards.
The 802.11i incorporates 802.1x [3] as the authentication solution for 802.11 wireless LANs. The IEEE
802.1x standard is a port-based network access control to authenticate and authorize devices interconnected
by various IEEE 802 LANs. The IEEE 802.11i is expected to play a critical role in improving the overall
security of current and future WLANs.

The IEEE 802.1x standard has been well-defined. Currently, many manufactures of 802.11 Access Point
(AP) also support 802.1x. The 802.1x-capable APs have been deployed in many universities, organizations,
and companies. To be authenticated by using 802.1x, end users also need to be 802.1x-capable. Unless
802.1x is embedded in the Operating System (OS), users generally will need to install a 802.1x client in
order to access to the network. Open1x [4], an open-source implementation of 802.1x, supports Mac OS X,
FreeBSD, OpenBSD, and Linux. Many users, however, are using MS Windows. They need a 802.1x client
software to access to the 802.1x-based LANs. We therefore develop the WIRE1x to support various versions
of MS Windows. As the name suggested, WIRE1x is an open-source implementation of IEEE 802.1x client
(supplicant)∗ developed by the Wireless Internet Research & Engineering (WIRE) Laboratory† .

Currently, WIRE1x supports MS Windows XP (without service pack and with service pack 1), Win-
dows 2000, Windows ME, and Windows 98. It provides EAP-MD5 [5], EAP-TLS [6], EAP-TTLS [7],
and PEAP [8]. WIRE1x works with freeRADIUS [9]. The implementation of WIRE1x is based on
Open1x, and is developed by using MS Visual C++. It utilizes libraries of WinPcap [10], Libnet [11],
and OpenSSL [12]. Both source code and executable code of WIRE1x can be downloaded freely from
http://wire.cs.nthu.edu.tw/wire1x/. This paper presents all components of WIRE1x exhaustively. The objec-
tive of this paper is to share our experience on implementing 802.1x supplicant. By reading this paper, one
should easily comprehend the source code of WIRE1x.

1.1 Motivation and Contribution

Currently, the National Tsing Hua University (NTHU) has deployed WLANs and is using IEEE 802.1x and
RADIUS [13] to authenticate users. Most users at NTHU are using MS Windows. However, we perceive
that none of the IEEE 802.1x client software meet all demands for users of MS Windows in the marketplace
up to now. Therefore, a major motivation for the development of WIRE1x is to solve the existing problem
and then help IEEE 802.1x to be deployed rapidly. It would also expedite the objective of seamless roaming
among different wireless LANs if the new IEEE standards are widely-deployed. The contributions include:

• WIRE1x is a free as well as open-source software. We believe open source is essential for any security

∗Supplicant is a terminology defined in 802.1x which will be described in Section 2.
†http://wire.cs.nthu.edu.tw/

2



related software because it can be examined as you wish.

• WIRE1x provides various EAP (Extensible Authentication Protocol) [14] based authentication meth-
ods, including EAP-MD5, EAP-TLS, EAP-TTLS, and PEAP.

• WIRE1x can work with various versions of MS Windows, including Windows XP, 2000, ME, and 98.

• WIRE1x works well with various types of WLAN cards. Please see the webpage at
http://wire.cs.nthu.edu.tw/wire1x/compatible.htm.

We believe that WIRE1x is a good choice for people eager for IEEE 802.1x client software. Since
WIRE1x was released on June 18, 2003, the website of WIRE1x has been visited for more than 15,000
times. There have been more than 2,100 downloads of source code and 3,800 downloads of executable code
up to November 2004.

The rest of the paper is organized as follows. Section 2 provides a brief overview of IEEE 802.11i
and IEEE 802.1x. Section 3 describes other available implementations of 802.1x. Section 4 discusses the
design and implementation of WIRE1x in details. Section 5 presents the real-world applications of WIRE1x.
Section 6 summarizes the paper.

2 Overview of IEEE 802.11i

This section briefly reviews WLAN security and IEEE 802.11i. For more details, please refer to [1, 2].
The IEEE 802.11 standard is one of the most widely adopted standards for broadband wireless Internet

access. However, the security consideration over wireless environment is more complicated than that in
wired environment. Due to the wide-open nature of wireless radio, the network is more vulnerable. The
original IEEE 802.11 standard has defined the following two basic security mechanisms for securing the ac-
cess to IEEE 802.11 networks: (1) entity authentication including open system authentication and shared key

authentication, and (2) Wired Equivalent Privacy (WEP). Nevertheless they are all proved to be vulnerable.
To enhance the security in IEEE 802.11, the IEEE 802.11i has been proposed. In addition to introducing

key management and establishment, it also defines encryption and authentication improvements. In order
to manage security keys automatically, the IEEE 802.11i has defined key management and establishment
algorithms. As conventional WEP is known to be vulnerable, the IEEE 802.11i has specified enhanced
encryption algorithms to provide stronger privacy. The IEEE 802.11i also incorporates IEEE 802.1x as its
authentication enhancement. The following sections briefly discuss Encryption Algorithm and 802.1x.

2.1 Encryption Algorithm

Two algorithms, Temporal Key Integrity Protocol (TKIP) and Counter mode with CBC-MAC Protocol
(CCMP) have been proposed. Both TKIP and CCMP provide enhanced data integrity and confidentiality
over WEP. TKIP, initially referred to as WEP2, is also based on RC4 encryption as that in WEP. It however

3



is implemented in a different way that addresses the vulnerabilities of WEP. TKIP can be adopted into the
older IEEE 802.11 products through relatively simple firmware upgrade. This is especially favorable for
vendors. TKIP is optional in IEEE 802.11i.

In addition to TKIP which is considered as a short-term solution for WLAN security, the IEEE 802.11i
has also defined CCMP as a long-term solution. The CCMP employs the stronger encryption of Advanced
Encryption Algorithm (AES) [15] which uses the CCM mode [16] with a 128-bit key and a 128-bit block
size of operation. The CCM mode combines Counter-Mode (CTR) and Cipher Block Chaining Message
Authentication Code (CBC-MAC). The CTR is used to encrypt the payload and the Message Integrity Code
(MIC) to provide confidentiality service. The CBC-MAC computes the MIC to provide authentication and
integrity services. Although the CCMP could provide much stronger security services, it requires additional
hardware (co-processor) to improve encryption performance. Unlike TKIP, CCMP is mandatory in IEEE
802.11i.

2.2 802.1x

The IEEE 802.1x defines a mechanism for port-based network access control. It is based upon EAP to
provide compatible authentication and authorization mechanisms for devices interconnected by IEEE 802
LANs. As depicted in Fig. 1, there are three main components in the IEEE 802.1x authentication system. In a
WLAN, supplicant usually is a Mobile Node (MN). AP usually represents an authenticator. Authentication,
Authorization, and Accounting (AAA) server such as RADIUS server is the authentication server. The port
in 802.1x represents the association between a MN and an AP. Both supplicant and authenticator have
a Port Access Entity (PAE) that operates the algorithms and protocols associated with the authentication
mechanisms. In Fig. 1, the authenticator’s controlled port is in unauthorized state. That is, the port is
open. Messages will be directed only to the Authenticator PAE, which will further direct 802.1x messages
to the authentication server. The authenticator PAE will close the controlled port after the supplicant is
authenticated successfully. Thus, the supplicant is able to access to other services through the controlled
port.

Based upon EAP, the IEEE 802.1x standard can use a number of authentication mechanisms. The
authentication mechanisms are outside the scope of the IEEE 802.1x. Many authentication mechanisms such
as Message Digest 5 (MD5), Transport Layer Security (TLS), Tunneled TLS (TTLS), Protected Extensible
Authentication Protocol (PEAP), and Lightweight Extensible Authentication Protocol (LEAP) [17] could
be used. The IEEE 802.1x also defines EAP over LANs (EAPOL) to encapsulate EAP messages between
the supplicant and the authenticator. The authenticator PAE relays all EAP messages between the supplicant
and the authentication server. The IEEE 802.1x is utilized to enforce the use of specific authentication
mechanism and to route authentication messages properly, while the authentication mechanisms define the
actual authentication exchanges that take place.

Fig. 2 shows a typical 802.1x message exchange. The associated PAE state transitions in supplicant and
authenticator are specified in Fig. 3 and Fig. 4, respectively. In Fig. 2, the digits in rectangles refer to the

4



supplicant PAE states in Fig. 3, and digits in circles refer to the authenticator PAE states in Fig. 4. In Fig. 2,
RADIUS is served as the authentication server. This does not limit the use of other AAA servers such as
Diameter [18] as the authentication server. Detailed discussion of Figs. 2–4 can be found in [2].

3 Related Work

This section discusses related implementations of 802.1x in the marketplace.
Table 1 lists most of commercial products of 802.1x supplicant. The supported operating systems and

EAP authentication methods are also specified. Although some of them provide pre-compiled binary code
for non-commercial use or free trial, basically they are not freeware. In addition, the source code are not
open to public either. Table 2 lists the open-source implementations of 802.1x supplicant. The Open1x is
designed to work with Linux although its earlier versions also supported BSD and Mac OS. Because many
users are eager for a free software of 802.1x supplicant to work with various versions of MS Windows, we
therefore have developed WIRE1x. Both Open1x and WIRE1x are licensed under the BSD License and
GNU General Public License (GPL). In addition to Open1x and WIRE1x, a newly initiated project called
wEAP [19] is writing open-source plug-ins for MS Windows 2000 and XP. Unlike wEAP, the WIRE1x is
an application program for various versions of MS Windows.

Table 3 lists the authentication servers and the EAP they support. Except freeRADIUS, all of them are
commercial products. As indicated in Table 3, the freeRADIUS supports many authentication mechanisms.
Others only support some of them. A user would not be authenticated if there is no common authentication
mechanism supported in both supplicant and authentication server. This will limit the roaming capability
significantly.

The supplicant software is indispensable to IEEE 802.1x standard. We observe that the success of
802.1x would greatly depend on end users. We believe that a free 802.1x supplicant software which works
with various versions of MS Windows and supports most of EAP authentication methods will boost the
deployment of 802.1x, and thus 802.11i. Therefore, we have developed WIRE1x and hope that most users
could access to WLANs with a more secure way.

4 WIRE1x

The software architecture of WIRE1x can roughly be divided into three components as illustrated in Fig. 5:
(1) supplicant PAE state machine, (2) EAP and authentication mechanisms, and (3) WinPcap, Libnet, and
OpenSSL. The supplicant PAE state machine follows the specification defined in the IEEE 802.1x for a
supplicant. The state machine is also depicted in Fig. 3. As the name suggested, the EAP and authentication
mechanisms support various authentication mechanisms in EAP including EAP-MD5, EAP-TLS, EAP-
TTLS, and PEAP. The WinPcap [10] and Libnet [11] are two open-source libraries which are responsible
for capturing and writing packets to and from the data link layer. Additionally, the OpenSSL [12] is another

5



open-source library which is used only for TLS-based authentication methods. The following sections
discuss the three main components in details.

4.1 Supplicant PAE State Machine

The supplicant PAE state machine is the core of any implementation of 802.1x supplicant. It specifies the
behavior of the supplicant and interacts with the authenticator. Again, the supplicant PAE state machine
is specified in Fig. 3 and the source code can be downloaded from http://wire.cs.nthu.edu.tw/wire1x/. In
WIRE1x, roughly speaking, it is implemented in four files: dot1x globals.cpp, eap.cpp, eapol.cpp, and
os generic.cpp. All variables of state machine are defined in dot1x globals.h. Additionally, the EAP code

field and type field specified in RFC 2284 [14] are defined in eap.h. The eap.cpp is responsible for building
the response frames and decoding the EAP packets. Moreover, EAPOL header and Ethernet header are de-
fined in eapol.h. The eapol.cpp is responsible for starting EAPOL process, performing necessary PAE state
actions, transiting to proper states, decoding the EAPOL packets, and transmitting EAPOL frames. Further-
more, os frame funcs.h comprises get frame(), send frame(), more frames(), and so on. In os generic.cpp,
get frame() employs pcap dispatch() to capture EAP frames. The send frame() employs libnet write link()
to send EAP frames.

4.2 EAP and Authentication Mechanisms

This section introduces the Extensible Authentication Protocol (EAP). In addition, we also use the message
exchanges depicted in Fig. 2 and the associated state machines shown in Fig. 3 and Fig. 4 to demonstrate a
typical authentication procedure of WIRE1x. Additionally, we provide detailed description of several EAP
authentication methods implemented in WIRE1x.

4.2.1 Overview

EAP [14] is a general protocol for authentication. It supports multiple authentication methods, such as token
card, Kerberos [20], one-time password, certificate, public key authentication, and smart card. Fig. 6 shows
that there can be many different authentication methods in the Authentication Layer. The authentication
methods are based upon EAP. Any new authentication mechanisms can be added easily. The WIRE1x is
expected to be versatile in authentication mechanisms. It has been implemented to support the most common
authentication methods, including EAP-MD5, EAP-TLS, EAP-TTLS, and PEAP.

Next, we present a typical authentication procedure of WIRE1x by using Figs. 2–4.

1. User opens and selects the device to be authenticated by pcap findalldevs(). MN starts to associate
with AP. Both of MN and AP then will transition to the CONNECTING state.

2. MN sends an EAPOL-start frame by libnet write link() to the AP to initialize the authentication pro-
cess.

6



3. When the AP receives EAPOL-Start, it will reply EAP-Request/Identity to obtain the MN’s identity.
When the MN captures the EAP frame by pcap dispatch(), the EAP frame is parsed by eap decode packet()
and eapol decode packet() located in eap.cpp and eapol.cpp, respectively. Moreover, according to the
result determined by eap decode packet() and eapol decode packet(), the supplicant PAE state ma-
chine transits to ACQUIRED state if the request is received successfully.

4. The MN sends back EAP-Response/Identity containing MN’s identity to the authenticator. Subse-
quently, the authenticator and authentication server will perform necessary message exchanges.

5. When the MN receives EAP-Request/Auth which contains RADIUS-Access-Challenge, the sup-
plicant PAE state machine transits to the AUTHENTICATING state. The MN replies an EAP-
Response/Auth to the authenticator in which the RADIUS-Access-Request is encapsulated.

6. Based on the result of the EAP authentication method, the RADIUS server decides whether to au-
thorize the user or not. If the user is authorized, the supplicant captures the EAP-Success and the
supplicant PAE state machine transits to the AUTHENTICATED state. Otherwise, the supplicant
captures the EAP-Failure and transits to the HELD state.

4.2.2 EAP-MD5

The EAP-MD5 [5] is one of the most popular EAP types because it is easy to use. A user simply types in
username and password to be authenticated. This is a simple and reasonable choice for wired LANs in which
there is low risk for attackers to intercept the transmission. In wireless LANs, however, attackers can easily
sniff a station’s identity and password hash. Therefore, MD5 is more vulnerable than other authentication
methods.

The MD5 algorithm described in [5] is implemented in md5.h and md5.cpp. We ported the MD5 algo-
rithm from Open1x and then implemented a Graphical User Interface (GUI) for MS Windows. The GUI,
shown in Fig. 7, consists of three input objects. Users only need to type in their usernames, passwords, and
select the proper network interface to be authenticated.

4.2.3 EAP-TLS

The EAP-TLS [6] is based on TLS [21] to provide protected cipher-suite negotiation, mutual authentication,
and key management. After the EAP-TLS negotiation is completed, the two end-points can securely com-
municate within encrypted TLS tunnel. Because TLS provides a way to use certificates for both user and
server to authenticate each other, a user, in addition to being authenticated, can also authenticate the net-
work. Therefore, forged APs could be detected. The supplicant and authentication server need to have valid
certificates when using EAP-TLS. This, however, makes EAP-TLS difficult to manage in some extends.

Fig. 8 illustrates the authentication process and message exchanges of EAP-TLS in a WLAN [22]. After
the authenticator receives the supplicant’s identity in EAP-Response (flow 3), it initiates a RADIUS-Access-
Request, which also carries the supplicant’s identity. The RADIUS server then provides its certificate to the

7



supplicant and requests the supplicant’s certificate. The supplicant validates the server’s certificate and
responds an EAP-Response which contains the supplicant’s certificate. The supplicant also initiates the
negotiation for cryptographic material. After the supplicant’s certificate is validated, the server responds
the cryptographic material for the session. The session keys derived in both ends could be used for data
encryption.

The EAP-TLS is implemented in tls funcs.h and tls funcs.cpp. The GUI of EAP-TLS is shown in Fig. 9
which consists of three major input objects. The select button on the upper-right corner of the GUI is
responsible for choosing the certificate in the supplicant. We use several functions from Windows SDK
(Software Development Toolkit) in mfcDlg.cpp as below:

1. The CertOpenSystemStore() for opening a system certificate store.

2. The CryptUIDlgSelectCertificateFromStore() for selecting a new certificate using UI.

3. The CertGetNameString() for finding and printing the name of the subject of the certificate just re-
trieved.

4. The CertOpenStore() for opening the certificate store to be searched.

5. CertCloseStore() for closing the system certificate store.

To use these functions, the system header files of wincrypt.h and cryptuiapi.h must be included. Ad-
ditionally, the libraries of crypt32.lib, advapi32.lib, and cryptui.lib must be linked. While we use these
functions to get the certificate structure, we must replace SSL CTX use certificate file() by
SSL CTX use certificate ASN1() in eapcrypt.cpp to receive the structure provided by Windows SDK func-
tions.

The second object is the password for the selected certificate. Before using the supplicant’s certificate,
the user must type in the correct password for the certificate. The third object is to select the proper network
interface to be authenticated. This is same as that in EAP-MD5.

4.2.4 EAP-TTLS

The EAP-TTLS [7] extends EAP-TLS to exchange additional information between client and server by
using the secure tunnel established by TLS negotiation. A EAP-TTLS negotiation comprises two phases:
the TLS handshake phase and the TLS tunnel phase. During phase one, TLS is used for client to authenticate
server. Optionally, the server can also authenticate the client. Same as that in EAP-TLS, the authentication
is done by using certificates. A secure TLS tunnel is also established after the phase-one handshake. In
phase two, the secure TLS tunnel can be used for other information exchanges, such as additional user
authentication key, communication of accounting information, etc.

In a WLAN environment, the EAP-TTLS usually is used as follows. First, TLS is used for a supplicant
to authenticate the authentication server by using certificate. Once the authentication server is authenticated,

8



the authentication server authenticates the supplicant by the supplicant’s username and password. The user-
name and password are carried in the attribute-value pairs (AVPs) defined by the AAA server, which usually
is a RADIUS server or Diameter server. The message exchanges are protected by the TLS tunnel estab-
lished in phase one. The authentication of supplicant in phase two can use any non-EAP protocols such as
PPP Authentication Protocols (PAP) [23], PPP Challenge Handshake Authentication Protocol (CHAP) [24],
Microsoft PPP CHAP Extensions (MS-CHAP) [25], or Microsoft PPP CHAP Extensions, Version 2 (MS-
CHAP-V2) [26]. Because only the authentication server needs to have a valid certificate, EAP-TTLS is
more manageable than EAP-TLS.

The EAP-TTLS in WIRE1x is implemented in tls funcs.h, tls funcs.cpp, ttlsphase2.h, and ttlsphase2.cpp.
The GUI of EAP-TTLS shown in Fig. 10 consists of five major input objects. The unprotected ID is used
to represent the supplicant’s identify for phase-one handshake. The username and password are used for
phase-two authentication. The user also needs to choose one of the authentication protocols which can be
PAP, CHAP, MS-CHAP, or MS-CHAP-V2 for phase-two authentication. Similarly, the user also needs to
select the proper network interface to be authenticated.

4.2.5 PEAP

The PEAP [8] provides an encrypted and authenticated tunnel based on TLS. The EAP messages encapsu-
lated inside the TLS tunnel, therefore, are protected against various attacks. Similar to EAP-TTLS, PEAP
also comprises two phases. In first phase, a TLS session is negotiated. The client also authenticates the
server by using certificate. Optionally, the server can also authenticate the client. In second phase, EAP
messages are encrypted by using the key negotiated in phase one. The basic idea of PEAP and EAP-TTLS
are identical. However, PEAP can only use EAP protocols in second phase, while EAP-TTLS can use EAP
or non-EAP protocols.

When using PEAP in WLANs, typically an authentication server is authenticated by a supplicant based
on the server certificate. A secure TLS tunnel is also created. A supplicant is then authenticated by using
username and password, which are protected by the TLS tunnel.

The PEAP in WIRE1x is implemented in tls funcs.h, tls funcs.cpp, eapmschapv2.h, eapmschapv2.cpp,
peapphase2.h, and peapphase2.cpp. The GUI of PEAP shown in Fig. 11 consists of three major input objects.
A user must type in username and password for phase-two authentication. Currently, only EAP-MS-CHAP-
V2 [27]‡ is supported. A user also needs to select the proper network interface to be authenticated.

To conclude Section 4.2, we provide comparison of the authentication mechanisms presented in this
section by Table 4. Table 5 further compares the TLS-based protocols.

‡EAP-MS-CHAP-V2 encapsulates the MS-CHAP-V2 within EAP.

9



4.3 Open-Source Libraries

This section describes the open-source libraries used in WIRE1x. WinPcap and Libnet are used to cap-
ture/write packets from/to data link layer. OpenSSL is used for TLS-based authentication methods.

4.3.1 WinPcap

The WinPcap [10] is used for packet capture and network analysis in Win32 platform. It includes a kernel-
level packet filter, a low-level dynamic link library (packet.dll), and a high-level and system-independent
library (wpcap.dll which is based on libpcap version 0.6.2). It is in charge of the following tasks:

1. The pcap findalldevs() in wire1xDlg.cpp prints the list of network interfaces. Therefore a user can
select a proper network interface to be authenticated.

2. The pcap dispatch() in os generic.cpp captures packets from AP.

3. The setup pcap() in os generic.cpp can be used to adjust parameters in filter. Filter can make the
supplicant receive EAP frames only.

4. The pcap close() in os generic.cpp shuts down WinPcap.

5. The pcap open live() in os generic.cpp selects promiscuous mode or non-promiscuous mode for the
network interface.

4.3.2 Libnet

The Libnet [11] is a generic networking API that provides access to several protocols. It is used only for
libnet write link() in os generic.cpp to write packets to AP.

4.3.3 OpenSSL

The OpenSSL [12] is an open-source toolkit which implements the Secure Sockets Layer (SSL) v2/v3
and TLS v1 protocols. It also includes a full-strength general purpose cryptography library. The TLS-
based authentication methods in WIRE1x use OpenSSL library in eapcrypt.cpp. There are many OpenSSL
functions in eapcrypt.cpp. Here, we only itemizes some of them:

1. The SSL CTX load verify locations() loads the server certificate in Privacy-Enhanced Electronic
Mail (PEM) [28] format. As discussed earlier, all TLS-based authentication methods need server
certificate in order to authenticate the server.

2. The SSL CTX use certificate file() loads the client certificate in Distinguished Encoding Rules (DER)
[29] format. Alternatively, the SSL CTX use certificate ASN1() loads the client certificate in Basic
Encoding Rules (BER) [29] format.

10



3. The SSL CTX use PrivateKey file() loads the client private key in PEM format. This function is used
by EAP-TLS only.

4.4 GUI

The GUI is developed by MFC program of MS Visual C++. There are five GUI programs in the WIRE1x
project. One of them is for the main program as shown in Fig. 12, which is responsible for selecting an EAP
authentication method. The other GUIs are for the programs of md5.exe, tls.exe, ttls.exe, and peap.exe,
which have been shown earlier. We also use thread function in mfcDlg.cpp to avoid blocking when GUI is
executing. Please refer to the source code for details.

5 Real-World Applications

The WIRE1x has been practically used at the National Tsing Hua University (NTHU). At NTHU, each
department/institute is responsible for the deployment of networking facilities in its own building(s). The
university has no authority over the areas owned by the department/institute. The Computer & Communica-
tion Center (CCC) operated by the university is responsible for the networking facilities in public areas on
campus. Thus, following standards is essential for roaming and integration of WLAN environments even
inside the same university.

Both CCC and the Computer Science (CS) department at NTHU have deployed WLANs by using
802.1x and RADIUS to authenticate users. To roam between different administrative domains, both of
their RADIUS servers could be connected together as shown in Fig 13. Assuming a user abc has an account
abc@nthu.edu.tw owned by the CCC. Once the user roams into the WLANs covered by the CS department,
the CS RADIUS server can authenticate the user by relaying the authentication messages back to the CCC
RADIUS. The CS RADIUS server acts as a proxy client to the CCC RADIUS server. With only one account
at CCC, the user still could roam into other WLANs.

6 Summary

This paper presents the motivation and contribution of WIRE1x. The implementation are discussed in de-
tails. By reading this paper, one should be able to examine the source code of WIRE1x in addition to using
it. Currently, WIRE1x supports several wireless cards and provides various authentication methods, includ-
ing EAP-MD5, EAP-TLS, EAP-TTLS, and PEAP. It is versatile comparing to many other implementations
of IEEE 802.1x supplicant. WIRE1x has been downloaded worldwide. We hope WIRE1x will not only
be used at NTHU, but will also play a crucial role for WLAN security and the interoperability of WLANs
among different universities, companies, and organizations.

11



Acknowledgments

We thank other members of the WIRE Lab, especially Chin-Hsing Lin, Wen-Ting Wu, and Jui-Hung Yeh,
for helping the development of WIRE1x. We also thank the support of the Computer and Communica-
tion Center, National Tsing Hua University, and the Computer Center, Department of Computer Science,
National Tsing Hua University.

References

[1] IEEE Std 802.11i, “Part 11: wireless LAN medium access control (MAC) and physical layer (PHY)
specifications. Amendment 6: medium access control (MAC) security enhancements,” July 2004.

[2] J.-C. Chen, M.-C. Jiang, and Y.-W. Liu, “Wireless LAN security and IEEE 802.11i,” IEEE Wireless

Communications (Accepted and to appear, 2004).

[3] IEEE Std 802.1X-2001, “IEEE standard for local and metropolitan area networks, port-based network
access control,” Oct. 2001.

[4] “Open1x.” http://www.open1x.org/.

[5] R. Rivest, “The MD5 message-digest algorithm.” IETF RFC 1321, Apr. 1992.

[6] B. Aboba and D. Simon, “PPP EAP TLS authentication protocol.” IETF RFC 2716, Oct. 1999.

[7] P. Funk and S. Blake-Wilson, “EAP tunneled TLS authentication protocol (EAP-TTLS).” IETF Internet
Draft, <draft-ietf-pppext-eap-ttls-05.txt>, work in progress, July 2004.

[8] A. Palekar, D. Simon, J. Salowey, H. Zhou, G. Zorn, and S. Josefsson, “Protected EAP proto-
col (PEAP), version 2.” IETF Internet Draft, <draft-josefsson-pppext-eap-tls-eap-10.txt>, work in
progress, Oct. 2004.

[9] “freeRADIUS.” http://www.freeradius.org/.

[10] “WinPcap.” http://winpcap.polito.it/.

[11] “Libnet.” http://libnet.sourceforge.net/.

[12] “OpenSSL.” http://www.openssl.org/.

[13] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote authentication dial in user service (RA-
DIUS).” IETF RFC 2865, June 2000.

[14] L. Blunk and J. Vollbrecht, “PPP extensible authentication protocol (EAP).” IETF RFC 2284, Mar.
1998.

12



[15] FIPS 197, “Advanced encryption standard (AES).” National Institute of Standards and Technology
(NIST), Nov. 2001.

[16] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC (CCM).” IETF RFC 3610, Sept.
2003.

[17] “Lightweight extensible authentication protocol - LEAP.” http://www.cisco.com/.

[18] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “Diameter base protocol.” IETF RFC
3588, Sept. 2003.

[19] “wEAP.” http://weap.sourceforge.net/.

[20] J. Kohl and C. Neuman, “The Kerberos network authentication service (v5).” IETF RFC 1510, Sept.
1993.

[21] T. Dierks and C. Allen, “The TLS protocol, version 1.0.” IETF RFC 2246, Jan. 1999.

[22] Cisco Systems, “White paper: EAP-TLS deployment guide for wireless LAN networks.”
http://www.cisco.com/, 2004.

[23] B. Lloyd and W. Simpson, “PPP authentication protocols.” IETF RFC 1334, Oct. 1992.

[24] W. Simpson, “PPP challenge handshake authentication protocol (CHAP).” IETF RFC 1994, Aug.
1996.

[25] G. Zorn and S. Cobb, “Microsoft PPP CHAP extensions.” IETF RFC 2433, Oct. 1998.

[26] G. Zorn, “Microsoft PPP CHAP extensions, version 2.” IETF RFC 2759, Jan. 2000.

[27] V. Kamath and A. Palekar, “Microsoft EAP CHAP extensions.” IETF Internet Draft, <draft-kamath-
pppext-eap-mschapv2-01.txt>, work in progress, Apr. 2004.

[28] B. Kaliski, “Privacy enhancement for Internet electronic mail: part iv: key certification and related
services.” IETF RFC 1424, Feb. 1993.

[29] ITU-T Rec. X.690, “ASN.1 encoding rules: specification of basic encoding rules (BER), canonical
encoding rules (CER) and distinguished encoding rules (DER),” July 2002.

13



Table 1: Commercial 802.1x supplicants
Vendor OS Supported EAP Supported

Meetinghouse MS Windows 98/ME/NT/2000/XP MD5,LEAP,TLS,TTLS,PEAP
Funk MS Windows 98/ME/2000/XP MD5,LEAP

Microsoft MS Windows 2000 TLS,PEAP
Microsoft MS Windows XP MD5,TLS
Microsoft MS Windows XP with SP 1, SP 2 TLS,PEAP

Cisco MS Windows/Mac OS/Linux MD5,LEAP
secureW2 MS Windows 2000/XP/Pocket PC TTLS

Table 2: Free 802.1x supplicants
Name OS Supported EAP Supported

Open1x Linux/BSD/Mac OS MD5,TLS,TTLS,PEAP,SIM
WIRE1x MS Windows 98/2000/ME/XP (including SP1) MD5,TLS,TTLS,PEAP

Table 3: Authentication servers
Vendor EAP Supported

Funk Software MD5,LEAP,TLS,TTLS
Interlink Networks MD5,LEAP
Hewlett-Packard MD5,LEAP

Microsoft MD5,TLS,PEAP
Cisco Systems MD5,LEAP,TLS
freeRADIUS MD5,TLS,TTLS,PEAP,LEAP

Table 4: Comparison of authentication mechanisms
EAP-MD5 EAP-TLS EAP-TTLS PEAP

Server No Public key Public key Public key
Authentication (certificate) (certificate) (certificate)

Supplicant Password Public key Certificate, Certificate
Authentication hash (certificate or EAP, or or

smart card) non-EAP protocols EAP protocols
Mutual No Yes Yes Yes

Authentication
Dynamic Key No Yes Yes Yes

Delivery

14



Table 5: Comparison of TLS-based methods
EAP-TLS EAP-TTLS PEAP

(RFC 2716) (Internet draft) (Internet draft)
Establish TLS (1) Establish TLS (1) Establish TLS

session and between client between client
Basic validate certificates and TTLS server and PEAP server

Protocol for both client (2) Exchange (2) Run EAP
Architecture and server attribute-value-pairs exchanges over

between TLS tunnel
client and server

Server Required Required Required
Certificate

Client Required Optional Optional
Certificate

Protection of User No Yes, protected Yes, protected
Identity by TLS by TLS

Figure 1: Supplicant, authenticator, and authentication server

15



Figure 2: A typical 802.1x message flow

16



Figure 3: Supplicant PAE state machine

17



Figure 4: Authenticator PAE state machine

Figure 5: Software architecture of WIRE1x

18



Figure 6: EAP and associated layers

Figure 7: GUI of EAP-MD5

19



Figure 8: Message flow of EAP-TLS

Figure 9: GUI of EAP-TLS

20



Figure 10: GUI of EAP-TTLS

Figure 11: GUI of PEAP

21



Figure 12: GUI of main program

Figure 13: Authentication on visited network

22


