
Enhancements in WIRE1x version 2.0
Yi-An Chen, Chien-Han Chen, Chien-Chia Chen, Jui-Yi Chen, and Jyh-Cheng Chen

Wireless Internet Research and Engineering Laboratory
National Tsing Hua University

Hsinchu, Taiwan

January 2, 2007

Abstract
WIRE1x is an open source implementation of IEEE 802.1x client (supplicant)

developed by Wireless Internet Research and Engineering (WIRE) Laboratory,
National Tsing Hua University. The version 0.1 was released on June 18, 2003. On
June 29, 2004, we released the first stable version of WIRE1x, which supported
Windows XP, 2000, ME, and 98. It also supported EAP-MD5, EAP-TLS, EAP-TTLS,
and EAP-PEAP. WIRE1x has received more and more attention in recent years.
Almost in every IEEE 802.1x supplicant evaluation literature, WIRE1x is included.
We have further enhanced WIRE1x and released the second version on December 11,
2006. This document briefly summarizes the enhancements in WIRE1x version 2.0.

Keywords: Authentication, Extensible Authentication Protocol (EAP), IEEE 802.1x,
IEEE 802.11i, Wireless LAN, Security

CONTENTS

1. Introduction...1

2. The Next Generation Wireless Standards......2

2.1 IEEE 802.11i ...2
2.2 IEEE 802.1x ..4
2.3 Overview of EAP..5

2.3.1 EAP-MD5..6
2.3.2 EAP-TLS...7
2.3.3 EAP-TTLS ..7
2.3.4 EAP-PEAP..8

3 WIRE1x ..9

3.1 Introduction to WIRE1x ...9
3.2 The Enhancement Plan of WIRE1x ...11

4. System Description ...13

4.1 System Architecture...13
4.2 Supporting NAK ..16
4.3 Configuration Wizard..16
4.4 Installation Wizard ..19

5. Conclusions..20

6. References..22

List of Figures and Tables

Fig. 1 : Supplicant, authenticator, and authentication server4
Fig. 2 : EAP and associated layers...5
Fig. 3 : A typical 802.1x message flow ...6
Fig. 4 : Supplicant PAE state machine..10
Fig. 5 : Authenticator PAE state machine...10
Fig. 6 : New GUI for WIRE1x ...13
Fig. 7 : AUTHENTICATED state (Success to authentication)...........14
Fig. 8 : HELD state (fail to authentication)..15
Fig. 9 : System block diagram ...15
Fig. 10 : Welcome dialog of configuration Wizard17
Fig. 11 : Dialog for setting information of EAP methods17
Fig. 12 : Dialog for showing all configurations18
Fig. 13 : Dialog for viewing current configurations.............................18
Fig. 14 : Installation Wizard ..20

Table 1 : Comparison of authentication mechanism.............................8
Table 2 : Comparison of TLS-based methods ..9

1. Introduction
As the infrastructure of Wireless Local Area Networks (WLAN) are widely

constructed, WLAN become much more popular in the last few years. WLAN breaks
the restriction of conventional wired communications and provides a convenient way
to access network at anywhere and any time. Among many related standards, the
IEEE 802.1lb [1] is the most widely-used one currently; however, it has already been
proved that the security considerations of IEEE 802.11b are not strong enough in
many situations. In order to enhance standard IEEE 802.1lb, the IEEE 802.1li [2] has
been released in July 2004.

IEEE 802.11i defines three main security mechanisms, which are key

management, encryption, and authentication improvement. In order to manage the key
distribution automatically, IEEE 802.11i develops algorithms and protocols based on
IEEE 802.11b. It introduces two ways to distribute keys, manual key management and
automatic key management. The former requires users to set a pre-shared key
manually; the latter incorporates with IEEE 802.1x [3] to support key management
services. IEEE 802.11i also develops two advanced cryptographic algorithm to
enhance confidentiality. In the mechanism of authentication enhancement, IEEE
802.11i work with IEEE 802.1x, which is a standard defines a port-based network
access control, to provide various Extensible Authentication Protocol (EAP) methods.

While end users want to access network supporting IEEE 802.1x, their devices

should be IEEE 802.1x-capable first. In order to be authenticated by using the IEEE
802.1x, supplicant (client) side has to install related client-side software unless the
IEEE 802.1x functionality has been built in the operating system (OS). WIRE1x is
developed for this purpose, and is an open source implementation of IEEE 802.1x
client (supplicant) developed by the Wireless Internet Research and Engineering
(WIRE) Laboratory [4]. WIRE1x is developed based on OPEN1x [5], which is also
an IEEE 802.1x open-source application designed for client-side’s authentication ran
on UNIX-liked operating systems. Unlike OPEN1x, WIRE1x is specially designed for
Microsoft Windows. Both the source code and the executable files of WIRE1x are
freely available on our website: http://wire.cs.nthu.edu.tw/wire1x/.

There have been several versions of WIRE1x released up to this year. The latest

version released in March, 2006 has already supported four Extensible Authentication
Protocol (EAP) methods, EAP Message Digest 5 (EAP-MD5) [6], EAP Transport
Layer Security (EAP-TLS) [7], EAP Tunneled TLS (EAP-TTLS) [8], and Protected

 1

Extensible Authentication Protocol (PEAP) [9]. Besides, it also supports several
Microsoft Windows versions such as Windows XP (with Service Pack 2), Windows
2000, Windows ME, and Windows 98. However, there are still some drawbacks:

Original W‧ IRE1x handles different EAP methods separately, that is, users must
activate different executable files instead of simply selecting a desired EAP
method in a integrated menu.
Current Graphic User Interface‧ (GUI) is not user-friendly enough. In the previous
version, no configuration-handling functions are supported, and thus users have to
configure their personal information every time they want to access WLAN.
WIRE1x uses some open source libraries, such as ‧ WinPcap and Libnet to handle
packets. However, in some circumstances, these libraries do not work very well
with some versions of Microsoft Windows. In addition, the installation steps are
also too complicated for most users.

Because of these inconveniences and some system faults, we decide to enhance

and revise the version released before. In the whole enhancement plan, we focus on
the integration of EAP and the implementation of a friendlier GUI, and fix numerous
fetal errors in the previous version

The rest of this report is organized as follows. Section 2 gives an overview of

IEEE 802.11i, 802.lx and EAP types supported by WIRE1x. Section 3 provides a
roughly introduction of WIRE1x, our enhancement plan and the method to implement.
System descriptions will be given in section 4 and we will conclude the report in the
last section.

2. The Next Generation Wireless Standards
2.1 IEEE 802.11i

 IEEE 802.11b is the most widely-used standard in the broadband wireless
networks. It defines two basic mechanisms to enhance the security of wireless
communication. The first mechanism is entity authentication and association. In an
IEEE 802.11b environment, a supplicant has to connect to an AP before accessing the
network. Then it has to complete an authentication work before going to the
association step. There are two ways to do the authentication: open system and shared
key. In an open system authentication, a supplicant sends messages to an AP, and then
the AP will send this identity to the authentication server. In a whole communicating
process, the WEP key is not required. In a shared key system, an AP will request the

 2

supplicant to provide an encrypted packet using the WEP key. The AP sends
messages to the authentication server after the result is verified corrected by AP. If the
authentication in the server side is also correct, the association is then connected. The
other mechanism is WEP (Wired Equivalent Privacy). The WEP is relayed between a
MN and an AP. It enhances the confidentiality of wireless communication. A
supplicant encrypts data and sends it with the related information to AP, and then AP
decrypt the message using shared WEP key.

However, the security consideration in wireless network is much more

complicated than the one in wired network. The two mechanisms mentioned above
have been proved to be extremely vulnerable. For example, a WEP protected
environment could be easily cracked once the man-in-the-middle collects enough
packets, typically, in half an hour. As a result, IEEE 802.11i is released as the next
generation wireless standard to enhance security concerned [10]. This standard
defines two classes of security framework of IEEE 802.11 WLAN: RSN, and
pre-RSN. A station is called RSN security framework if it can generate RSNAs;
similarly, it is called pre-RSN if it can generate pre-RSNAs. A pre-RSNA system is
similar to the one defined in IEEE 802.11. RSN enhances the security mechanism of
original pre-RSN network.

IEEE 802.11i defines some key management procedures as well, the

authentication and encryption method. There are two methods to support key
distribution, manual key management and automatic key management. Manual key
management requires users to configure a pre-shared key. Automatic key
management incorporates with IEEE 802.1x to support key management services.
However, this mechanism works only in RSNA.

In order to enhance encryption mechanisms, IEEE 802.11i proposes two

algorithms: (1) Temporal Key Integrity Protocol (TKIP) and (2) Counter mode with
CBC-MAC Protocol(CCMP). Both TKIP and CCMP could provide more confidential
data protections than the original WEP.

 IEEE 802.11i works with IEEE 802.1x for its key management and
authentication services. In authentication mechanism, IEEE 802.11i relies on IEEE
802.1x to provide different types of EAP. It incorporates two components into an
original IEEE 802.11 system: IEEE 802.1x port and Authentication Server (AS). In an
IEEE 802.1x defined port, the connection will be built only when the authentication is
completed, and the authentication is completed only if the supplicant and the server

 3

could authenticate the other by the requested EAP methods.

2.2 IEEE 802.1x

 The IEEE 802.1x defines a port-based network access control mechanism. It
provides an authentication and authorization mechanism for other IEEE 802 LAN
devices based upon EAP. In an IEEE 802.1x system, there are three major
components: supplicants, authenticators and authentication servers. As depicted in
Fig.1, a supplicant is usually a Mobile Node (MN), which is similar to a client. An
Authenticator handles communications between servers and supplicants, and is
usually represented by AP. An Authentication server, such as a RADUIS server,
provides Authentication, Authorization, and Accounting (AAA). The term ‘port’ used
in IEEE 802.1x denotes the association between a supplicant (MN) and an
authenticator (AP). There is a Process Access Entity (PAE) in both AP and MN,
which is accountable for the authentication-related mechanism, such as algorithms
and protocols. As shown in Fig.1, the port controlled by AP is initially in the
unauthenticated state. Messages sent to AP will be redirected to the authentication
server through Authenticator’s PAE, and then the server will start the authenticating
process. If authentication is carried out successfully, the port controlled by AP will
transit to the authenticated state and become connected. Eventually, supplicant can
access network services through this port.

Fig. 1 : Supplicant, authenticator and authentication server

 IEEE 802.1x uses Extensible Authentication Protocol (EAP) to provide several
authentication schemes, such as EAP Message Digest 5 (EAP-MD5), EAP Transport

 4

Layer Security (EAP-TLS), EAP Tunneled TLS (EAP-TTLS), and Protected
Extensible Authentication Protocol (EAP-PEAP), and so on. 802.1x also defines EAP
over LANs (EAPOL) to encapsulate EAP messages between a MN and an
authentication server through the PAE of authenticator.

2.3 Extensible Authentication Protocol

 Extensible Authentication Protocol (EAP)[11, 12] is the most popular general
authentication framework. In addition to the authentication process, EAP also defines
a simple mechanism to negotiate a suitable authentication method between servers
and clients. Fig.2 depicts the basic framework of EAP system. In the authentication
layer, many different authentication methods are developed on the basis of EAP layer.
When a new method is created, it is easy to develop based on this well-defined
protocol. Among many EAP methods, WIRE1x supports four of the most commonly
used methods, EAP-MD5, EAP-TLS, EAP-TTLS, and EAP-PEAP, which will be
briefly introduced in the following sections. In the end of this section, a comparison
table regarding the differences among these four popular authentication methods was
provided in Table 1.

Fig. 2 : EAP and associated layers

 The general authenticating procedure in EAP is illustrated in Fig.3. First,
supplicant sends an EAPOL-start message to an authenticator. When the authenticator
receives this message, it will send EAP-Request/Identity to ask for supplicant’s

 5

identity. Then the supplicant replies EAP-Response/Identity, which containing
identity information to the authenticator. After receiving this message, the
authenticator starts to exchange information with the authentication server. It will
send RADIUS-Access-Request and receive RADIUS-Access-Challenge from the
server. The information in RADIUS-Access-Challenge will be included in
EAP-Request/Auth, which is sent from the authenticator to the supplicant in order to
get the authentication data. A response will be sent to the authenticator first and then
relayed to the server. After the authenticating procedure, server will send either an
“accept” or a “reject” message to the authenticator. If an “accept” message is sent, the
authenticator will send EAP-Success message and the supplicant could transit to the
AUTHENTICATED state. Otherwise, the supplicant will receive EAP-Failure and
transit to the HELD state. This is the general EAP authentication procedure. Some
steps or required messages differ from varies authentication methods.

Fig. 3 : A typical 802.1x message flow

2.3.1 EAP-MD5

 EAP-MD5 [6] is one of the simplest and most popular authentication methods.
Only two data are required: username and password. Users provide their usernames
first, and then the supplicants will send the usernames to AP. By the time AP receives
these packets, it will reply them via the RADIUS-Access-Request message. After the
server receives the data, it will send Challenge/Response packets to the supplicant.
Later on, the supplicant then encapsulates the password in EAP-Response/Auth, and
sends to the server through AP. Eventually, the authentication is completed after
server replies a success message to supplicant. This procedure is quite simple and

 6

easy to implement; however, it has been proved more vulnerable than other methods
due to its simplicity.

2.3.2 EAP-TLS

 The standard of EAP-TLS [7, 12] is considered to be the most secure EAP
method and is supported by many manufacturers. EAP-TLS is based on TLS [13] to
provide protected cipher-suite negotiation, mutual authentication, and key
management. The reason why EAP-TLS can provide a great deal of security is that it
will build an encrypted tunnel between a supplicant (MN) and an authenticator (AP)
after the negotiation was completed. Then all communications will be carried out in
the protected tunnel. In the standard, a server and a supplicant can manually
authenticate the certificate of each other, and they can also authenticate the network.
A compromised password is not enough to break into EAP-TLS enabled systems
because illegal users still should to have the client-side certificate. If the certificate is
kept in some hardware devices, for example, a smart card, then it will be difficult to
steal the private key in the certificate.

 However, there are some chanllenges to manage the EAP-TLS system because
valid certificates are both required for supplicants and authentication servers. In the
typical EAP authentication procedure, when a server receives a supplicant’s identity
from EAP-Response/Identity by an AP, it will send a message containing its
certificate information and ask for the one of the supplicant. And the supplicants will
response the server its certificate information as well. In addition to these basic data,
both ends also provide cryptographic material for the session. These session keys can
be used to encrypt data.

2.3.3 EAP-TTLS

 EAP-TTLS [8] is an EAP protocol that extends from EAP-TLS. In EAP-TLS, a
TLS handshake is used to authenticate both client side and server side mutually.
When this phase finishes, a secure tunnel will be established. EAP-TTLS extends the
authentication negotiation by using a secure connection built before clients and
servers exchange additional information. Different from EAP-TLS, EAP-TTLS does
not restrict valid certificates in both supplicant and server. A TLS handshake in
EAP-TTLS may be two-way or one-way, only the server is authenticated by clients.
The server can authenticate the supplicant in the secure tunnel by other authentication
methods. Authentication methods used here are not restricted to be EAP methods.

 7

They can be other authentication protocols, such as PPP Authentication Protocols
(PAP), PPP Challenge Handshake Authentication Protocol (CHAP), Microsoft PPP
CHAP Extensions (MS-CHAP), Microsoft PPP CHAP Extensions Version 2
(MS-CHAP-V2), and so on.

2.3.4 EAP-PEAP

 EAP-PEAP [9] is similar to EAP-TTLS, which is also an EAP protocol that
extends EAP-TLS. Table 2 briefly summarizes the differences among three
TLS-based methods. There are two phases in a PEAP authentication negotiation: (1)
handshake phase (2) tunnel phase. In the first phase, a supplicant uses certificate to
authenticate an authentication server. A server can also authenticate a client by its
certificate, but it is mandatory. After the negotiation finishes, two ends can transfer
information in an encrypted tunnel form using the key obtained in the previous phase.
The most different concept of PEAP from TTLS is that it restricts protocols used in
phase two to be EAP only, such as, MS-CHAP-V2. Briefly speaking, PEAP uses the
TLS channel to protect the EAP exchanging later. Authentication must be performed
using a protocol that is defined for the use with EAP.

Table 1 : Comparison of authentication mechanism

 EAP-MD5 EAP-TLS EAP-TTLS EAP-PEAP
Server

Authentication
No Public Key

(Certificate)
Public Key
(Certificate)

Public Key
(Certificate)

Supplicant
Authentication

Password
Hash

Public Key
(Certificate or
Smart Card)

Certificate,
EAP, or

non-EAP
protocols

Certificate or
EAP methods

Manual
Authentication

No Yes Yes Yes

Dynamic Key
Delivery

No Yes Yes Yes

 8

Table 2 : Comparison of TLS-based methods

 EAP-TLS EAP-TTLS EAP-PEAP
Basic

Protocol
Architecture

Establish TLS
session and

validate certificates
for both client and

server

(1) Establish TLS
between client

and TTLS
server

(2) Exchange
attribute-value-
pairs between

server and client

(1) Establish TLS
between client and

PEAP server

(2) Run EAP
exchange between

TLS tunnel

Server Certificate Required Required Required
Client Certificate Required Optional Optional
Protection of User

Identity
No Yes, protected by

TLS
Yes, protected by

TLS

3 WIRE1x

3.1 Introduction to WIRE1x

WIRE1x is an open-source implementation of IEEE 802.1x client (supplicant)
developed by the Wireless Internet Research and Engineering (WIRE) Laboratory,
National Tsing Hua University, Hsinchu, Taiwan. This software provides users an
easy way to access the WLAN by using EAP and the authentication mechanisms
defined by IEEE 802.1x.The implementation of WIRE1x is based on Open1x [5],
which is also a software designed for WLAN authentication, but supports only Linux.
Although there are many users use Microsoft Windows, only little free software could
provide a comprehensive and convenient authentication solution. For these reasons,
WIRE1x is developed for supporting varies versions of Microsoft Windows and
providing a number of authentication methods.

The structure of WIRE1x could divide into three components: (1) supplicant
PAE state machine, (2) EAP and authentication mechanisms, and (3) Several 3rd party
libraries--WinPcap[14], Libnet[15], and OpenSSL[16]. Supplicant PAE state machine
follows the specification defined in IEEE 802.1x. The general state diagram of PAE
state machine is illustrated in figures 4 and 5. WIRE1x supports various authentication
mechanisms in EAP. In the latest version, four EAP authentication mechanisms are
supported by WIRE1x, including EAP-MD5, EAP-TLS, EAP-TTLS, and EAP-PEAP.

 9

http://wire.cs.nthu.edu.tw/
http://www.open1x.org/

WinPcap and Libnet are open-source libraries for capturing and writing frames to the
data link layer. WinPcap is used to capture packets sent from AP. It also helps
WIRE1x to receive only EAP frames by adjusting parameters in filter. Moreover,
WIRE1x use WinPcap to retrieve the list of network interfaces. OpenSSL is also an
open-source library that crypts and decrypts messages required by the TLS
authentication methods. It is a toolkit that implements the Secure Sockets Layer (SSL)
v2/v3 and the TLS v1 protocols. WIRE1x use it to load server certificates, client
certificates, and the client private key in different formats. These certificates are
required in the authentication process.

Fig. 4 : Supplicant PAE state machine

Fig. 5 : Authenticator PAE state machine

 10

3.2 The Enhancement Plan of WIRE1x

Our major targets of the plan are: (1) making WIRE1x more convenient and (2)
making the system of WIRE1x more stable. From the previous version, we have
found several shortcomings that can be improved, which are as follows:

1. The four authentication methods supported by current WIRE1x are separated

into four programs. This may probably make users confused. Besides, users
must change from different executables if they want to change authentication
methods. How to setup these four programs and other associated files
correctly are also suffering for most users.

2. The authentication process of WIRE1x works under the condition that

authentication servers and supplicants both held the same methods in the
beginning. Since the previous version could not handle the situation that
server asks the method that it does not support, once the default method of
servers is not supported by the supplicant, the authentication fails. However,
according to the specification of EAP standard, the authentication should be
successful if supplicants support any one method but not only the default one
provided by servers.

3. WIRE1x adopts several open source libraries to capture and send frames,

read interfaces, etc. Since WIRE1x must work with these libraries, users have
to install them before executing WIRE1x. Unfortunately, according to our
testing, some versions of these libraries are not compatible with several
versions of Microsoft Windows, and hence might cause WIRE1x crash.

 First, we decide to solve the problem about separated GUI. We try to design a
new GUI model for WIRE1x and transform our develop environment to Visual Studio
2003. The new GUI should merge four EAP methods into a single window form and
display the integrated information. We add a configuration dialog to help users
configure these EAP methods. However, we come up with some problems when we
port EAP-MD5 from original program to the new one. It seems that WinPcap does not
work very well under Visual Studio 2003. The new program always crash once it calls
the WinPcap APIs. After several discussions, we decide to abort the development of
the new GUI and try to remove the 3rd party libraries from the original version.

 11

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=confuse

 To remove these open-source libraries, we begin to trace the source code of
SecureW2. SeureW2 is a free IEEE 802.1x supplicant which supports EAP-TTLS for
Microsoft Windows, but none of 3rd libraries are involved. We surmise that SecureW2
is based on numerous services provided in Microsoft Windows, which maybe useful
for us. After tracing codes and testing the program, we find that the structure of
SecureW2 is considerably differs from the one of WIRE1x. SecureW2 does not
handle any authentication process but acts as extensions of the Wireless Zero
Configuration (WZC) service in Windows. Compared to WIRE1x, SecureW2 releases
as a dynamic linked library (dll) file instead of an executable one. Initially, after users
install it, SecureW2 adds numerous of registry values into Windows to make itself
play a role of a callback routine of the Remote Access Service (RAS), which is a basic
service of the WZC service. When the authentication server requests some
authentication information, WZC service would receive the requests and invoke
callback functions of SecureW2, and SecureW2 would retrieve these information
from the user profile and return to the callee, however, which is not a piratical
paragon for us, because in order to adopt this model, we should revise the old
architecture extremely significantly. For example, the PAE state machine will be no
longer necessary, that is, we must destroy the old WIRE kernel and remove all related
implementations, which implies that WIRE1x would no longer be WIRE1x.
Furthermore, Some EAP methods also have to be removed, for instance, EAP-MD5
could hardly cooperate with Microsoft Windows, since it has been blocked due to
several security issues according to the Microsoft announcement. In addition,
WIRE1x will depend on these services in this way, that is, every time Microsoft
releases new service packs, we may have to revise in order to be compatible with
them. Similarly, in most of older Windows versions that do not build in these services,
such as Windows 98, WIRE1x would not be executed under these versions due to the
lack of the infrastructures. Eventually, by tracing SecureW2, we could scarcely collect
any information useful. Hence, we decide to keep the original structure of WIRE1x
and continue to develop a new integrated GUI. This time we try to develop it using
Visual studio 6.0, the original develop environment of WIRE1x.

 To solve other problems, we have the following solutions:

1. We implement a configuration wizard rather than the original configuration
dialog. This wizard can also integrate all four EAP methods into one window
form. Besides, users could configure their profiles much more easily in this
way.

 12

2. We also design an installation wizard to help users install and remove
WIRE1x more conveniently. This wizard would install all necessary files by
simply clicking a few buttons, and users would suffer no panic about which,
where, and how to place the related files.

3. NAK supporting is implemented. When WIRE1x finds the method that the

server requests is not available, it will send server a NAK message to indicate
which methods are acceptable. If the server supports these methods, it could
choose one supported method to proceed the authentication.

More details of the implementation regarding our enhancement implementation

will be discussed in next section.

4. System Description
This section describes the implementation details. The new architecture and

features will be discussed in the separated sub sections.

Fig. 6 : New GUI for WIRE1x

4.1 System Architectures

In this sub section, we will give an illustration of the partially new architecture.
After the enhancement, the user interface and some functions of WIRE1x have been
revised. The major three original components of WIRE1x, supplicant PAE state

 13

machine, EAP authentication mechanisms, WinPcap, and OpenSSL, are kept.

First, there is an installation wizard to help user install WIRE1x. Besides, there

are three parts in the new interface, which are a toolbar on the top, an interface list in
the middle, and a control button on the bottom. The whole interface is shown in Fig.6.
The configuration wizard is invoked by clicking the “Config” icon in toolbar. Users
have to configure their profiles in the beginning; otherwise, they are not allowed to go
to the next steps. When users finish configuring profiles, they could click the “login”
button, which would launch the authentication. Real-time state transitions are shown
in the textbox titled “STATUS:” in the middle of the window form, so users could
clearly know which state WIRE1x is in.

When the authentication process begins, configurations of each EAP method will

not be set until the program realize which EAP method server requests by decoding
the packets sent from the server. If the method that the server requests is not enabled,
a NAK message will be sent. If users authenticate successfully, WIRE1x will transit to
AUTHENTICATED state. Otherwise, it will transit to HELD state. In the authentica-
tion process, all functionalities of configuration will be disabled temporarily. After the
program finishes the authentication, users can click the “logoff” button to send a
logoff packet to the server in order to logout. To click the “Exit” button will simply
terminate the program without sending any message. The execution screenshots in the
different states are shown in figures 7 and 8.

Fig. 7 : AUTHENTICATED state (Success to authentication)

 14

Fig. 8 : HELD state (fail to authentication)

The whole process and structure of the system is illustrated in Fig.9. Briefly

specking, users install the program by the installation wizard, and then they could
execute the program. They have to use the configuration wizard in the beginning to
provide necessary information of available EAP methods and then begin to
authentication. If the authentication successes, user will see the state shown in the
status area transit to the AUTHENTICATED state. If authentication fails, they may
have to correct their profiles and login again. After they login successfully, they could
click the logout button to send logoff message to the server or just exit when they
want to disconnect.

Fig. 9 : System block diagram

 15

4.2 Supporting NAK

 NAK [11] is a special message sent from a supplicant in response of the request
of the EAP information from an authentication server. It is used to reply to a server
that the authentication method it requests is not supported by the client. In a typical
EAP procedure, the NAK message will be sent after a supplicant receives
EAP-Request/Auth from the authenticator. In a normal situation, if a supplicant
supports the EAP method that server desired, it returns an EAP-Response/Auth to the
AP. However, if this method is not available, the authentication fails without the NAK
mechanism. In a typical NAK response, the supplicant will indicate one or more
supported EAP types. When an AP receives the NAK message, it will send
RADIUS-Access-Request to the server again and contain information received in
NAK. If the authentication server supports these new authentication protocols, it will
send a new RADIUS-Access-Challenge to the AP, and request information of another
available method. The authentication fails only if servers accept no method that
clients supported.

 In WIRE1x, there are several parts handling NAK. The supplicant receives a
packet from the AP and decode it by eap_decode_packet(). If it finds that the variable
eap_return returns from eap_decode_packet() is zero, the packet is an EAP packet. It
will use eap_type_check() to check whether the authentication method that server
requests is acceptable in clients. If it is available, related information will be set and
EAP-Response/Auth packet will be sent. Otherwise, it will call send_NAK() to send a
NAK message. Users could configure multiple EAP methods at the same time, so the
NAK message may contain multiple EAP methods and the corresponding
information.

4.3 Configuration Wizard

 Configuration wizard is also an important achievement for improving the
user-friendliness. It not only integrates four EAP methods but also helps the NAK
mechanism work successfully. The configuration wizard is in the “Config->setting”
button of the toolbar. When users launch it, it will show a serial of dialogs to help
them configure their settings for each EAP methods. The first dialog is shown in
Fig.10, and it will ask users that they want to create a new configuration or edit the
current configuration. The dialog for configuration of EAP methods is illustrated in
Fig.11. There will be a little difference among the different EAP methods. There are
two main parts in these dialogs: one is used to check whether some settings are

 16

enabled and the other one is used to edit necessary information. After users configure
available methods completely, the wizard will show a dialog about what
configurations have already been set. This dialog is shown in Fig.12, which shows
information within the list box in the middle. The “Reset” button would cancel the
current settings and the “Finish” button would save and exit

Fig. 10 : Welcome dialog of configuration Wizard

Fig. 11 : Dialog for setting information of EAP methods

 17

Fig. 12 : Dialog for showing all configurations

 In addition to the configuration wizard, there are other functionalities for users to
deal with EAP methods’ settings. The “Config->view” button in the toolbar can show
current configurations as illustrated in Fig.13. The “Delete” button can clear the
configuration already set. When users want to keep their configurations, they can
click the “Config->save” button to save the profiles as a file with a extend file name
“.1xconf”. They can click “Config->load” button to load their profiles as current
configuration any time. All functionalities of configuration, except viewing
configuration, will be disabled during the authentication process. Whether the
authentication is successful or failed, these buttons will become enabled again when
the process is completed.

Fig. 13 : Dialog for viewing current configurations

 18

When the configuration wizard is terminated by clicking the “finish” button,
profiles will be saved into a “userconf” structure. There will be a “user_setting”
pointer points to its memory location. Then all data will be saved into the
corresponding fields, such as “user_setting->ttls_username,” “user_setting->
ttls_password,” etc. If users have enabled EAP-MD5, then username of EAP-MD5 is
saved in “user_setting->username,” which is the actual location of data used in an
authentication process. If EAP-MD5 is not enabled, WIRE1x will search other EAP
methods, in the sequence of EAP-TTLS, EAP-TLS, and EAP-PEAP, for available
usernames and set them as default. The reason why we have to set usernames in
advance is the supplicant should have some data to reply in the EAP-Request/Identity
message. The information of the authentication method actually working in a
supplicant will not be requested by the server immediately after the authentication
procedure proceeds, so we can set other information and then send the correct
messages when a server sends an EAP/request message. However, EAP-MD5 differs
from other methods because it uses the identity that we reply for authentication, so we
must have set correct username of EAP-MD5 as the default setting in the beginning.

4.4 Installation Wizard

 The installation wizard is implemented to help users install and remove the
program more conveniently. In the installation of the previous version of WIRE1x,
users must download all related files and locate them manually in the correct place
and order. In this version, with installation wizard, users could just follow the
instructions to install WIRE1x. The wizard also creates a shortcut in the desktop and
in the start menu.

 The installation wizard is designed by using the functionality of installation
project in Visual Studio 2003. It encapsulates all associated files in a package. When
users launch it, it shows a serial of dialogs to help users. The first step shows some
messages to welcome users. The next step, as illustrated in Fig.14, requests the
installation path and the priority to other people who use this computer. When users
finish the decision of the path and the priority, the wizard begins to decompress the
package to the desired directory, and establish shortcuts and links. There will be
another dialog to inform users after the installation is complete.

 When users want to remove WIRE1x, they can go to ”Add or Remove
Programs” in the “Control Panel.” There is an icon that indicates users where to start
the uninstallation process. After users click the remove button the system removes

 19

WIRE1x automatically. Shortcuts will be removed as well.

Fig. 14 : Installation Wizard

5. Conclusions
Due to the popularity of wireless networks, the importance of the related

software is also increased. Compared to the wired networks, security considerations
of the wireless networks are much more critical. Hence, to access the wireless
networks through a much more secure standard, such as the next generation wireless
standard—IEEE 802.11i, is an unavoidable trend.

 After our revision, the latest WIRE1x becomes a much more powerful
comprehensive solution for the next generation wireless environment. In the previous
version, there are so many disadvantages that make users extraordinary panic to
install, to configure, and to use, and thus these drawbacks motivate us to have
WIRE1x reach a whole new milestone.

 In this paper, we show that how our project significant is. First of all, we
integrate different EAP methods into a single window form, that is, users no longer

 20

have to activate different executables when switching to different methods. This new
version also supports multiple EAP methods simultaneously, in other words, users
could configure more than one methods and WIRE1x would choose the proper one to
proceed automatically. In addition to supporting multiple EAP methods, this version
contains the NAK negotiating function as well, which could select another method
while the default one of servers is not supported by clients. Furthermore, in order to
make WIRE1x more user-friendly, several wizards are involved, which are
configuration wizard and installation wizard. The configuration wizard is an
extremely facility in managing user profiles. By using this wizard, users scarcely
suffer the inconvenience of editing, saving, and loading profiles before enjoying the
convenience of the wireless networks. The complicated and verbose installation
instructions are also extinct, since the other wizard, installation wizard, dramatically
simplifies the manual installation to a few simple mouse clicks.

 WIRE1x is expected to have a significant impact in the IEEE 802.1x supplicant
market, because it is currently the only comprehensive client solution for the next
generation wireless security standard for Windows. However, the finishing of our
project is not the end of WIRE1x maintenance but another whole new beginning of it.
In the future, by supporting more secure and popular authentication methods, and by
supporting more operating systems, even for some handheld devices, we expect that,
as the wireless services are more widely provided and used, WIRE1x could become
more significant and more powerful.

 21

6. References
[1] IEEE Standard 802.11b-1999, “LAN/MAN Specific Requirements – Part 11:

Wireless Medium Access Control (MAC) and physical layer (PHY)
specifications: High Speed Physical Layer in the 5 GHz band,” 1999.

[2] IEEE Standard 802.11i, “Part 11: wireless LAN medium access control (MAC)
and physical layer (PHY) specifications. Amendment 6: medium access control
(MAC) security enhancements,” July 2004.

[3] IEEE Standard 802.1X-2001, “IEEE standard for local and metropolitan area
networks, port-based network access control,” Oct. 2001.

[4] J.-C. Chen and Y.-P. Wang, “Extensible Authentication Protocol (EAP) and IEEE
802.1x: Tutorial and Empirical Experience ,” IEEE Communications Magazine,
vol. 43, no. 12, pp. S26-S32, Dec. 2005

[5] “Open1x” http://www.open1x.org/.
[6] R. Rivest, “The MD5 Message-Digest Algorithm,” IETF RFC 1321, Apr. 1992.
[7] B. Aboba, D. Simon, “PPP EAP TLS Authentication Protocol,” IETF RFC 2716,

Oct. 1999.
[8] P. Funk and S. Blake-Wilson, “EAP tunneled TLS authentication protocol

version 1 （EAP-TTLSv1）,＂ IETF Internet Draft, <draft-funk-eap-ttls-v1-
00.txt>, work in progress, Feb. 2005.

[9] A. Palekar, D. Simon, J. Salowey, H. Zhou, G. Zorn, and S. Josefsson, “Protected
EAP protocol （ PEAP ） , version 2,” IETF Internet Draft,
<draft-josefsson-pppext-eap-tls-eap-10.txt>, work in progress, Oct. 2004.

[10] J.-C. Chen, M.-C. Jiang, and Y.-W. Liu, “Wireless LAN Security and IEEE
802.11i ,” IEEE Wireless Communications, vol. 12, no. 1, pp. 27-36, Feb. 2005.

[11] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, H. Levkowetz, “Extensible
Authentication Protocol (EAP),” IETF RFC 3748, Jun. 2004.

[12] “Extensible Authentication Protocol,” Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Extensible_Authentication_Protocol

[13] T. Dierks and C. Allen, “The TLS protocol, version 1.0,” IETF RFC 2246, Jan.
1999.

[14] “WinPcap” http://winpcap.polito.it/.
[15] “Libnet” http://libnet.sourceforge.net/.
[16] “OpenSSL” http://www.openssl.org/.

 22

