
Design and Implementation of WIRE1x
EAP-SIM Module

Siao-Jie Cai, Chih-Hsuan Lee, Han-Hsing Chiu, Chih-Hsiang Hsueh,
Jui-Yi Chen, Chien-Chia Chen, and Jyh-Cheng Chen

Wireless Internet Research and Engineering Laboratory
National Tsing Hua University

Hsinchu, Taiwan

January 2, 2007

Abstract
This document presents the design and implementation of WIRE1x EAP-SIM

module. The WIRE1x is an open-source implementation of IEEE 802.1x client
(supplicant) developed by the Wireless Internet Research & Engineering (WIRE)
Laboratory. The IEEE 802.1x defines a port-based network access control to
authenticate and authorize devices interconnected by various IEEE 802 series LANs.
It also works with extensible authentication protocol (EAP) to carry out the
authentication. EAP-SIM is a challenge-response mechanism using the GSM
Subscriber Identity Module (SIM). The integration of the cellular networks and the
WLANs is believed to be a trend of the network development. The motivation for
developing WIRE1x EAP-SIM module is to provide a better security and trusty
mechanism over the WLANs and to lower the cost of roaming among different
WLANs or cellular networks. Moreover, providing SIM-based authentication will be
convenient for network operator to manage accounts.

Keywords: Authentication, IEEE 802.1x, Extensible Authentication Protocol (EAP),
EAP-SIM, Wireless LANs, Security

 1

Table of Contents
I. Abstract 01
II. Table of Contents 02
III. List of Figures 03
IV. 04

1. Introduction 04
2. Introduction to IEEE 802.1 05

2.1. IEEE 802.1x Authentication Framework 05
2.2. EAP Authentication Methods 07

3. EAP-SIM 08
3.1. GSM Authentication 08
3.2. EAP-SIM Authentication 09

4. Smart Card and the ISO 7816 Standard 11
4.1. SmartCard 11
4.2. The ISO 7816 Standard 12

5. System Description 13
5.1. WIRE1x supplicant PAE state Machine 14
5.2. EAP-SIM 14
5.3. SMhandler 23

6. Conclusions and Future Work 25
V. References 26

 2

List of Figures
Fig. 1: The IEEE 802.1x Framework. 06
Fig. 2: Controlled port is switched on after authorized. 07
Fig. 3: The IEEE 802.1x protocol stack. 08
Fig. 4: The GSM Security Framework. 09
Fig. 5: The EAP-SIM Architecture. 10
Fig. 6: EAP-SIM Full Authentication Message Flow. 11
Fig. 7: Application Communications Architecture. 13
Fig. 8-1: The supplicant PAE state machine. 16
Fig. 8-2: UML diagram of WIRE1x SIM related function. 17
Fig. 8-3: UML diagram of WIRE1x SIM related function. 18
Fig. 9-1: Packet contents of EAP-SIM/Request/Identity. 19
Fig. 9-2: Packet contents of EAP-SIM/Response/Identity. 19
Fig. 9-3: Packet contents of EAP-SIM/Request/Start. 20
Fig. 9-4: Packet contents of EAP-SIM/Response/Start. 20
Fig. 9-5: Packet contents of EAP-SIM/Request/Challenge. 21
Fig. 9-6: Packet contents of EAP-SIM/Response/Challenge. 21
Fig. 10: GUI of WIRE1x EAP-SIM module. 22
Fig. 11: Message exchange between the authenticator and the

authentication server. 22
Fig. 12: Supplicant is authenticated successfully. 23
Fig. 13-1: The operations and state transitions of sm_handler. 24
Fig. 13-2: The operations and state transitions of sm_handler. 25

 3

1. Introduction
The wireless local area network (WLAN) is very popular in the metropolis and

campus. To make user roaming among different WLANs seamlessly is a popular topic
in wireless network research. The National Center for High-Performance Computing
(NCHC) [1] in Taiwan has also proposed a plan to prompt the cross-campus WLAN
roaming. In addition, coming with second generation mobile networks and third
generation mobile networks, it is believed that the integration of the mobile networks
and the WLANs will be a trend of the wireless network development. Hence, the
authentication, authorizing and accounting (AAA) is the main issue coming with the
development of WLANs and mobile networks.

The IEEE 802.11b [2] is a widely adopted wireless standard. The IEEE802.11b
standard has defined the following two basic security mechanisms: entities
authentication including open system authentication and shared key authentication,
and Wired Equivalent Privacy (WEP). But it is has been reported that these two
security mechanisms adopted in IEEE 802.11b is vulnerable. Thus, the IEEE 802.11i
[3-4] has been proposed to enhance the security of IEEE 802.11b networks. IEEE
802.11i also incorporates IEEE 802.1x [5] as its authentication enhancement.

The IEEE 802.1x standard defines a port-based network access control to
authenticate and authorize devices interconnected by various IEEE 802 series local
area networks (LANs). It is suitable for the authentication in WLAN because it
provides better security guarantee. To adopt the IEEE 802.1x authentication, both the
access points (AP) and end users need to be capable with IEEE 802.1x. Most of the
APs on the market now support IEEE 802.1x. There are also some IEEE 802.1x client
software developed by other universities and organizations. National Tsing Hua
University (NTHU) has deployed WLAN and adopted IEEE 802.1X and RADIUS [6]
to authenticate users to achieve a secured WLAN environment. WIRE1x [7] has also
been released since July 18, 2003 to provide users a free IEEE 802.1x client software
under Microsoft Windows. WIRE1x has supported many EAP (Extensible
Authentication Protocol) [8] authentication methods, including EAP Message Digest 5
(EAP-MD5) [9], EAP Transport Layer Security (EAP-TLS) [10], EAP Tunneled TLS
(EAP-TTLS) [11] and Protected Extensible Authentication Protocol (EAP-PEAP)
[12].

All of the four authentication methods except for EAP-TLS need network access
identifier (NAI) and password, while EAP-TLS needs a verified certificate which is
usually obtained by downloading from the existing Internet service. For those
methods that require ID and passwords bring about the problem of account
management, and for EAP-TLS, the certificate is hard to obtain as the user need the

 4

certificate to access the Internet, but the certificate cannot be acquired until there is
Internet service, which is obviously a paradox.

Besides the four authentication methods mentioned above, 3GPP [13] proposed
another method, EAP-SIM. EAP-SIM is different from other EAP methods that
WIRE1x has supported, because it is an EAP mechanism based on the secret key
stored on Global System for Mobile Communications (GSM) Subscriber Identity
Module (SIM) [14] card. EAP-SIM utilizes the SIM card as the authentication token,
allows WLAN to utilize existing GSM authentication infrastructure, which is mature
and established, and integrates WLAN and mobile billing as one. It features many
advantages that other methods do not possess:

 Removes the user’s burden of remembering passwords
 Provides an authentication service that is both strong and easy to use
 Allows rapid deployment due to the high penetration of mobile phones
 Uses open standards and supports interoperability with other systems

The development of WIRE1x EAP-SIM module is using Visual C++ 6.0, and is
based on the Open1x [15], an open-source implementation of 802.1x supplicant
software, which supports Mac OS X, FreeBSD, OpenBSD, and Linux.

This work provides user a more secure and convenient way to perform the
authentication when using the WLAN as EAP-SIM supports mutual authentication to
protect the user from accessing spurious AP and no more username (NAI) or
password is needed. Users can rely on just one SIM card to access different wireless
LANs seamlessly if roaming is supported by the different network operators.

The rest of this document is organized as follows. Section 2 is an introduction to
IEEE 802.1x and we briefly describe the GSM and EAP-SIM authentication flow in
the third section. An overview of smartcard and the ISO 7816 standard will be given
in section 4. In section 5, we depict the implementation details of WIRE1x EAP-SIM
module, and conclude the report in the last section.

2. Introduction to IEEE 802.1X
The IEEE 802.1x is a standard defining port-based network access control to

provide a mechanism of authentication and authorization network devices that
attached to IEEE 802 series LANs, and several background knowledge related to
IEEE 802.1x will be provided in the following sections.

2.1 IEEE 802.1x Authentication Framework

There are three main components in IEEE 802.1x framework as depicted in Fig.

 5

1: supplicant, authenticator, and authentication server. The port in a system is capable
of providing services to other systems or accessing service available via the LAN. In
IEEE 802.1x, the supplicant is the port that wishes to access service offered by the
authenticator, which is generally a mobile node (MN) in a WLAN; while the
authenticator is the port that will enforce authentication before making service
available to a supplicant. Authentication server performs authentication function to
check the supplicant’s credentials and to indicate whether the authentication is
successful or not. The authenticator and authentication server can be collocated within
one system, but in a WLAN, the access point (AP) usually plays the role of an
authenticator, and the Authentication, Authorization, and Accounting (AAA) server
such as RADIUS server is an authentication server. There is a port access entity (PAE)
in both supplicant and authenticator that operates the algorithm and protocol
associated with the authentication mechanisms.

Fig. 1: The IEEE 802.1x Framework.

The authenticator PAE controls the state of the controlled port depending on the

result of the authentication process. Before the authentication succeeds, the controlled
port is in the unauthorized state (switch off) as shown in Fig. 1, and only the
uncontrolled port is switched on to direct IEEE 802.1x messages to the authentication
server. No other traffic is allowed before the authentication is completed. After the
authentication is completed successfully, the authenticator PAE will switch on the
controlled port to authorized state as Fig. 2. Thus, the supplicant is able to access
other services provided by the authenticator’s system.

 6

Fig. 2: Controlled port is switched on after authorized.

2.2 EAP Authentication Methods

The IEEE 802.1x works with the EAP to do the actual authentication. Since EAP
supports many authentication methods, new authentication schemes can be easily
deployed. This makes IEEE 802.1x an ideal option to provide a more convenient and
securer network environment. Commonly used EAP methods include EAP-MD5,
EAP-TLS, EAP-TTLS, and PEAP, EAP-SIM and extensible authentication protocol
method for the 3 rd generation authentication and key agreement (EAP-AKA) [16].

The IEEE 802.1x also defines EAP over LANs (EAPOL), an encapsulation
technique to carry EAP messages between a supplicant and an authenticator. The
authenticator just relays the messages between the supplicant and authentication
server. Fig. 3 shows the IEEE 802.1x protocol stack.

 7

Fig. 3: The IEEE 802.1x protocol stack.

3. EAP-SIM
3.1 GSM Authentication

The EAP-SIM protocol was deployed by 3GPP to specify an EAP mechanism for
authentication and session key distribution using the Global System for Mobile
Communications (GSM) Subscriber Identity Module (SIM).

The GSM security framework includes the following three algorithms:
 A3 Algorithm is used for authentication.
 A5 Algorithm is a stream cipher algorithm used to encrypt the user traffic.
 A8 Algorithm is used to derive a cipher key that will be used in the A5

algorithm.
The GSM authentication is based on the challenge-response mechanism as

depicted in Fig. 4. The authentication relies on a 128-bit long secret key Ki, which is
stored in the end user’s SIM card and the key database of the network operator, a
reliable 3rd party, or an organization owned by the government. It’s important that this
shared key Ki should keep secret and should never be transmitted over the network.

 8

The network also issues a 128-bit random number (RAND) as a challenge to the user.
The user and the network both use their own Ki and the RAND as the input to the A3
algorithms to generate a 32-bit signed response (SRES). The user then replies the
SRES to the network. The network can authenticate user’s identity by comparing the
SRES received with the output of its own A3 algorithm.

The A8 algorithms takes the same input as the A3 algorithm but will generate a
64-bit cipher key (Kc). The A5 algorithm then takes Kc and a 22-bit counter value
(COUNT) to encrypt the user traffic. The change in COUNT is used to prevent replay
attack. Since the network should generate the same Kc as the user, the network could
decrypt the encrypted data.

The lack of mutual authentication is a major weakness in GSM authentication;
furthermore, the 64-bit long cipher key (Kc) is not strong enough for data networks as
well [17-18].

Fig. 4: The GSM Security Framework.

3.2 EAP-SIM Authentication

The security of EAP-SIM relies on underlying GSM mechanisms. But to meet
the security requirement of a data network, the EAP-SIM uses several RANDs to
generate several 64-bit Kc keys, which are combined to constitute a stronger keying

 9

material. Also, in EAP-SIM, the client will issue a random number NONCE_MT as a
challenge to the network to achieve mutual authentication and to contribute to key
derivation. Fig. 5 is the architecture of EAP-SIM.

Fig. 5: The EAP-SIM Architecture.

Next, we introduce the full authentication flow of EAP-SIM. For the simplicity
of explanation, we only mention the authentication flow of a general case. Fig. 6 is a
typical EAP-SIM full authentication procedure.

In the beginning, the supplicant issues an EAPOL-Start packet to inform the
authenticator to launch the authentication process. After receiving the EAPOL-Start
packet, the authenticator sends an EAP-Request/Identity packet to the supplicant. In
EAP-SIM full authentication, the supplicant then sends a response packet with the
user’s International Mobile Subscriber Identity (IMSI) stored in the SIM card to the
authenticator. After receiving the peer’s identity, the authenticator sends an
EAP-Request of the type SIM and the subtype Start packet with a list of EAP-SIM
versions supported by the EAP server stored in the AT_VERSION_LIST attribute.
The supplicant then responds to the request with an EAP_RESPONSE/SIM/Start
packet which carries a random number NONCE_MT and the
AT_SELECTED_VERSION attribute that contains the selected version number to the

 10

authenticator. The authenticator then connects to the authentication server to obtain n
(n=2 or 3) GSM triplet to derive the keying material. A GSM triplet is formed by the
three GSM authentication values: RAND, Kc, and SRES mentioned before. The next
EAP request issued by the authenticator is of the type SIM and the subtype Challenge,
which contains the RAND challenges and a message authentication code attribute
AT_MAC to cover the challenges. On receipt of the EAP-Request/SIM/Challenge
packet, the peer then runs the algorithms depicted in Fig. 5 to derive a copy of the
message authentication code and the SRES. If the MAC does match, the supplicant
responds with the EAP-Response/SIM/Challenge, with the AT_MAC attribute that
covers the peer’s SRES response values to the authenticator. If the received SRES
matches the one calculated by the authenticator, the authenticator will send an
EAP-Success packet to indicate that the authentication was successful.

Fig. 6: EAP-SIM Full Authentication Message Flow.

4. Smart Card and the ISO 7816 Standard
4.1SmartCard

A smartcard, chip card, or integrated circuit card is designed as pocket-sized card
with embedded integrated circuits. It is exactly the shape and the size of credit card
(or smaller, e.g. the GSM SIM card) that stores a lot of sensitive information, carries

 11

out local processing on the data stored, and performs complex calculations.
 Let’s discuss some of the key features and characteristics of smartcards. The first
is its high reliability and low cost. Vendors provide smartcards that mostly meet ISO
specification and have passed different crucial tests. Besides, a pocket-sized smartcard
can store eight thousand to one hundred and twenty-eight thousand bits information,
so the powerful storage capacity is the second feature. Smartcards are user-friendly as
they provide simple interface with intended application, and ease of use is also a main
characteristic. Last but not least is its high security, information stored on the chip is
difficult to duplicate or disrupt unlike the outside storage used on magnetic stripe
cards which can be easily copied.
 There are two fundamental types of smartcard software. One is “host software”,
which refers to software runs on a computer connected to a smartcard. Host software
is also referred to as reader-side software. The other is “card software”, which refers
to software that runs on the smartcard itself. As a counterpart of reader-side software,
card software is also referred to as card-side software. Host software connects the
smartcard and the user retrieves the smartcard contents via this connection.

4.2 The ISO 7816 Standard

The PC/SC [19] specification builds upon existing industry smartcard standards--
ISO 7816 [20-21] and EMV [22]. ISO 7816 defines low-level device interfaces and
device-independent application APIs as well as resource management to allow
multiple applications to share smartcard devices attached to a system.
 ISO 7816 includes at least six approved parts and has several additional parts
under review. The following are overviews of different parts, but we only focus on the
part 4 for exposition.

 Part 1 — Physical characteristics
 Part 2 — Dimensions and location of the contacts
 Part 3 — Electronic signals and transmission protocols
 Part 4 — Inter-industry commands for interchange
 Part5 — Number system and registration procedure for application

identifiers
 Part 6 — Inter-industry data elements

A smartcard is attached to system through a card reader. The reader sends
command to the card, and operations are carried out on the card. The questions are:
What does the command look like? Is there any protocol or standard that sends
commands? To support the application protocol APIs, a protocol message format is
defined in ISO/IEC 7816-4, through which the function calls, associated parameters,

 12

and status response parameters are exchanged between the reader-side application and
the card-side application. This message format is characterized by application
protocol data units (APDUs), which are conveyed between the reader-side and the
card-side application by the link-level protocol (generally either a T=0 or a T=1
protocol defined in ISO 7816-3). Fig. 7 below shows the communications architecture
between reader-side and card-side application.

Fig. 7: Application Communications Architecture.

5. System Description
The WIRE1x is an implementation of IEEE 802.1x client. It is a free as well as

open-source. It has been practically used in real-word applications with FreeRADIUS
(http://www.freeradius.org/) as to secure WLAN environments. The source code could
be downloaded from (http://wire.cs.nthu.edu.tw/wire1x/index.html). By reading the
descriptions below, one should easily understand the architecture of WIRE1x and the
authentication flow of IEEE 802.1x using EAP-SIM.

The software architecture of the WIRE1x EAP-SIM module can be divided into
four components:

1. The WIRE1x core procedure, which involves the supplicant PAE state
machine, the processing of EAPOL and the Ethernet headers, the building
of response frames, and the decoding of the EAP packets.

2. EAP-SIM related functions, which decode and process the received
EAP-SIM packet. And to derive necessary EAP-SIM related information
required for building EAP-SIM response packets.

3. SIM handler in sm_handler.cpp, which is responsible for all connections
and data exchanges between supplicant and the smartcard reader attached
on the client’s system.

4. Other open source library such as WinPcap [23] and Libnet [24] for
capturing and writing frames, and OpenSSL [25], for handling

 13

http://wire.cs.nthu.edu.tw/wire1x/index.html

cryptographic hash functions.

5.1 WIRE1x Supplicant PAE State Machine

The supplicant PAE state machine is the core of any implementation of IEEE
802.1x supplicant. It specifies the behavior of the supplicant and the interactions with
the authenticator. In WIRE1x, roughly speaking, it is implemented in four files:
dot1x_globals.cpp, eap.cpp, eapol.cpp, and os_generic.cpp. And the definition of the
variables of state machine is in dot1x_globals.h. Additionally, the EAP code field and
type field specified in RFC 3748 [8] are defined in eap.h, and EAPOL header and
Ethernet header are defined in eapol.h. The eap.cpp is responsible for building the
response frames and decoding the EAP packets. The eapol.cpp is responsible for
starting EAPOL process, performing necessary PAE state transitions, decoding and
transmitting EAPOL frames.

WinPcap and Libnet are used to capture/write frame from/to link layer. In
os_generic.cpp, get_frame() employs pcap_dispatch() to capture EAP frames. The
send_frame() employs libnet_write_link() to send EAP frames.

5.2 EAP-SIM

After the packet is decoded and determined to be a EAP-SIM packet, following
steps of determining the subtype of EAP-SIM packet, processing attributes included
in the packet, establishing link with smartcard reader to derive SIM information
needed to run GSM algorithm for deriving session keys, and building response EAP
messages are carried out via these SIM related functions. They are implemented in 5
files: eapsim.cpp, sim.cpp, simd5.cpp, simd11.cpp, sm_handler.cpp with SIM specific
variables, struct eapsim_data, defined in userconf.h.
 eapsim.cpp is accountable for initializing necessary SIM specific variables,
acquiring IMSI from the smartcard to use as username (NAI), decoding packet and
calling functions for different types of EAP requests, and handling included attributes.

sim.cpp handles the processing of each received attributes and the generation of
attributes needed to include in response packets and necessary sessions keys. Each
function in sim.cpp is fundamentally designed for processing one specific received
attribute and generating corresponding attribute. This function then includes this
attribute into the response packet, which constructs part of the packet. After all
attributes needed are included, the response packet is complete.

simd5.cpp and simd11.cpp are responsible for calculating MAC. The calculation
varies according to the highest protocol version supported by both supplicant and

 14

authenticator. MAC mechanism based on cryptographic hash functions, HMAC
function of OpenSSL, is used.

Next, we will demonstrate the authentication procedure of WIRE1x EAP-SIM
module in Fig. 8, and Fig. 9 illustrates transmitted and received packets.

1. Users launch WIRE1x EAP-SIM module as Fig. 10 and select the device to be
authenticated by calling pcap_findalldevs(). MN begins to associate with AP.
Both MN and AP will transit to the CONNECTING state.

2. MN sends an EAPOL_Start frame by libnet_write_link() to AP to initialize
the authentication process.

3. When AP receives EAPOL-Start frame, it will send an EAP-Request/Identity
packet to obtain the MN's identity. When the MN receives the EAP frame by
pcap_dispatch(), the EAP frame is parsed by eap_decodepacket() and
eapol_decode packet() located in eap.cpp and eapol.cpp, respectively.
Moreover, according to the decoding result, the supplicant PAE state machine
transits to ACQUIRED state if the request is received successfully. As for
EAP-SIM, eap_build_responseId()in eap.cpp is called which will later call
eapsim_get_username() to acquire IMSI from the smartcard as MN’s identity.

4. MN sends back EAP-Response/Identity containing MN's identity to the
authenticator. Subsequently, the authenticator and the authentication server
will perform necessary message exchanges as depicted in Fig. 11.

5. When MN receives EAP-Request/Challenge which contains
RADIUS-Access-Challenge, the supplicant PAE state machine transits to the
AUTHENTICATING state. As SIM is determined to be the authentication
method, eapsim_decode_packet() will determine whether the packet received
is of subtype start or challenge. Then, the included attributes in that packet are
processed by calling corresponding functions defined in sim.cpp.

6. First, MN will receive an EAP-Request/SIM/Start packet. Then the
sim_build_start() and sim_at_version_list() are called, each constructing part
of the response packet. When all attributes are included, the packet is
completed and sent.

7. Next, the EAP-Request/SIM/Challenge with AT_MAC is received by the MN.
sim_mac(), sim_v1_response(), sim_rand(), are called to derive MAC and
session keys. sim_mac() calls do_v0_at_mac or do_v1_at_mac to calculate
MAC depending on the protocol versions. fips186_2_prng() is used to
generate pseudorandom number for key derivation. However, if the MAC
calculated doesn’t match with the one received, MN will issue an
EAP-Response/SIM/Client-Error packet and the authentication exchange will
be terminated. If all checks out, the peer responds with the

 15

EAP-Response/SIM/Challenge containing the AT_MAC attribute that covers
the peer’s SRES response values.

8. On the basis of the result of the EAP authentication method, the RADIUS
server decides whether to authorize the user or not and a corresponding EAP
packet is sent to the supplicant. If the user is authorized as in Fig. 12, the
supplicant captures the EAP-Success packet and the supplicant PAE state
machine will transit to the AUTHENTICATED state. Otherwise, the
supplicant captures the EAP-Failure and transits to the HELD state.

Fig. 8-1: The supplicant PAE state machine.

 16

Fig. 8-2: UML diagram for the SIM related function in WIRE1x

 17

Fig. 8-3: UML diagram for the SIM related function in WIRE1x

 18

Fig. 9-1: Packet contents of EAP-SIM/Request/Identity

Fig. 9-2: Packet contents of EAP-SIM/Response/Identity

 19

Fig. 9-3: Packet contents of EAP-SIM/Request/Start

Fig. 9-4: Packet contents of EAP-SIM/Response/Start

 20

Fig. 9-5: Packet contents of EAP-SIM/Request/Challenge

Fig. 9-6: Packet contents of EAP-SIM/Response/Challenge

 21

Fig. 10: GUI of WIRE1x EAP-SIM module

Fig. 11: Message exchange between the authenticator and the authentication server.

 22

Fig. 12: Supplicant is authenticated successfully.

5.3 SMhandler

During the EAP-SIM authentication process, we must use a SIM card and
retrieve attributes from it. Due to the prevalence of smartcard in recent years, it is
necessary for standards to be established; fortunately, the existence of PC/SC solves
this problem. Nowadays, most of the smartcards and readers are compatible with this
standard. We use Microsoft’s PC/SC API to develop our application.

The operations between application and smartcard are as follows:
1. Application uses PC/SC API to transmit APDU commands to operating

system.
2. Operating system transmits APDU commands to reader through a driver

which adopts PC/SC standard.
3. Reader transmits the commands to the smartcard transmission controller

using protocol T=0 or T= 1.
4. The transmission controller transmits APDU commands to the smartcard

COS, and after the smartcard COS executes APDU commands, it returns the
results.

The file winscard.h is a PC/SC API. The development of smhandler is based on
winscard.h to provide smartcard manipulation. Fig. 13 is an overview of the
operations and the state transitions of smhandler. The operations are generalized as
follows:

 23

1. sm_handler_init_ctx() in sm_handler.cpp initializes context and gets ready to
authenticate SCardEstablishContext.

2. sm_handler_get_readers() in sm_handler.cpp retrieves available reader.
3. sm_handler_card_connect() in sm_handler.cpp connects to the smartcard
4. sm_handler_wait_card_ready() in sm_handler.cpp keeps waiting for up to 20

seconds for the smartcard to become ready.
5. sm_handler_2g_imsi() in sm_handeler.cpp transmits several APDUs to

retrieve IMSI.

Fig. 13-1: The operations and state transitions of sm_handler.

 24

Fig. 13-2: The operations and state transitions of sm_handler.

6. Conclusions and Future Work
 We believe that EAP-SIM will be a suitable authentication mechanism used in
the integration of WLAN and cellular networks in the future. From users’ point of
view, the users can just rely on one SIM card to roam among different WLAN and
cellular networks and does not have to manage a multitude of passwords. Besides, the
authentication process is very simple and intuitive, no complicated settings is required.
EAP-SIM will also provide users a much better protection when using the wireless
networks because mutual authentication is supported. As for network operators,
providing SIM based authentication will lower the cost of account management, and
will also to achieve higher protection of the valuable assets of network operators.
Most importantly, the threshold for deployment SIM based authentication is quite low
because it is build upon the underlying GSM structure. Due to its usage simplicity, its
superior security, and its cost efficiency, unsurprisingly, EAP-SIM will be one of the
most widely adopted authentication method in the future.

 25

Thus, WIRE1x EAP-SIM module is expected to have a tremendous impact in the
promotion of IEEE 802.1x and wireless networks since it provides users using
Microsoft Windows a simpler, more user-friendly, and securer authentication
mechanism. Most importantly, WIRE1x is a free as well as an open-source software.
It is believed that open-source is fundamental for any security-related software
because it can be examined by anyone who concern about the implementation detail.

There are some optional functions specified in RFC 4186 that have not been
implemented in WIRE1x EAP-SIM module yet. Moreover, the 3GPP has specified an
enhanced Authentication and Key Agreement (AKA) architecture for the Universal
Mobile Telecommunications System (UMTS), a 3rd generation (3G) AKA mechanism
which includes mutual authentication, replay protection, and derivation of longer
session keys. EAP-AKA is an EAP method based on 3G AKA, which is a more secure
protocol than EAP-SIM. As 3G mobile network becomes increasingly popular,
EAP-AKA will also be adopted to provide better secure network environment. Hence,
the future work of WIRE1x is to provide more functionality about EAP-SIM and to
implement EAP-AKA and more EAP methods to catch up with the trend.

References
[1] “NCHC” http://www.nchc.org.tw/
[2] IEEE Standard 802.11b-1999, “LAN/MAN Specific Requirements – Part 11:

Wireless Medium Access Control (MAC) and physical layer (PHY)
specifications: High Speed Physical Layer in the 5 GHz band,” 1999.

[3] IEEE Standard 802.11i, “Part 11: wireless LAN medium access control
(MAC) and physical layer (PHY) specifications. Amendment 6: medium
access control (MAC) security enhancements,” July 2004.

[4] J.-C. Chen, M.-C. Jiang, and Y.-W. Liu, “Wireless LAN security and IEEE
802.11i,” IEEE Wireless Communications, vol. 12, pp. 27.36, Feb. 2005.

[5] IEEE Standard 802.1X-2001, “IEEE standard for local and metropolitan area
networks, port-based network access control,” Oct. 2001.

[6] C. Rigney, S. Willens, Livingston, A. Rubens, Merit, W. Simpson, and
Daydreamer, “Remote Authentication Dial In User Service (RADIUS),”
IETF RFC 2865, June 2000.

[7] “WIRE1x,” http://wire.cs.nthu.edu.tw/wire1x/index.html
[8] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, H. Levkowetz, “Extensible

Authentication Protocol (EAP),” IETF RFC 3748, Jun. 2004.
[9] R. Rivest, “The MD5 Message-Digest Algorithm,” IETF RFC 1321, Apr.

1992.

 26

[10] B. Aboba, D. Simon, “PPP EAP TLS Authentication Protocol,” IETF RFC
2716, Oct. 1999.

[11] P. Funk and S. Blake-Wilson, “EAP tunneled TLS authentication protocol
version 1 （EAP-TTLSv1）,” IETF Internet Draft, <draft-funk-eap-ttls-v1
-00.txt>, work in progress, Feb. 2005.

[12] A. Palekar, D. Simon, J. Salowey, H. Zhou, G. Zorn, and S. Josefsson,
“Protected EAP protocol （PEAP） , version 2,” IETF Internet Draft,
<draft-josefsson-pppext-eap-tls-eap-10.txt>, work in progress, Oct. 2004.

[13] “3GPP,” http://www.3gpp.org/
[14] H. Haverinen, and J. Salowey, “Extensible Authentication Protocol Method

for Global System for Mobile Communications (GSM) Subscriber Identity
Modules (EAP-SIM),” IETF RFC 4186, January 2006.

[15] “Open1x,” http://open1x.sourceforge.net/
[16] J. Arkko, and H. Haverinen, “Extensible Authentication Protocol Method for

3rd Generation Authentication and Key Agreement (EAP-AKA),” IETF RFC
4187, January 2006.

[17] Jyh-Cheng Chen, and Tao Zhang, “IP-Based Next-Generation Wireless
Networks: Systems, Architectures, and Protocols,” Wiley, January 2004.

[18] “GSM Security,” http://www.gsm-security.net/
[19] “PC/SC Workgroup,” http://www.pcscworkgroup.com/
[20] “ISO,” http://www.iso.ch
[21] “EMVCo,” http://www.emvco.com
[22] “CardWeck,”

http://www.cardwerk.com/smartcards/smartcard_standard_ISO7-816.aspx
[23] “WinPcap,” http://winpcap.polito.it/
[24] “Libnet,” http://libnet.sourceforge.net/
[25] “OpenSSL,” http://www.openssl.org/

 27

http://www.3gpp.org/
http://www.gsm-security.net/
http://www.pcscworkgroup.com/
http://www.iso.ch/
http://www.emvco.com/
http://www.cardwerk.com/smartcards/smartcard_standard_ISO7-816.aspx

